VII Semester (Artificial Intelligence and Machine Learning)													
SL.NO	Course and course			g ent	Теас	Teaching Hours/Week				Examination			
		JULE	Course Title	Teachin Departme	Theory Lecture	Tutorial	Practica I/Drawi ng	Self Study	Duratio n in hours	see Marks	CIE Marks	Total Marks	Credits
					L	Т	Р	S					
1	PEC	21AI71A	Generative Al	RD	3	0	0	0	03	50	50	100	3
2	PEC	21AI72A	Virtual Reality and Augmented Reality	RD	3	0	0	0	03	50	50	100	3
3	OEC	21AI731	Open Elective – II	RD	3	0	0	0	03	50	50	100	3
4	OEC	21AI741	Open Elective – III	RD	3	0	0	0	03	50	50	100	3
5	Project	21AIP75	Project Work	Rd	Two contact	hours /week f faculty and	or interaction d students.	between the	03	50	50	100	10
6	AEC	21AI76	Ability Enhancement Course (Online 4 weeks)		-	-			03	50	50	100	2
			Total		12	0	0	0	400	40	0	800	24
Professional Elective Core-I					1	Profess	sional Elective	Core -II				·	

 Natural Language Processing (21AI71B) Multimedia & Information Retrieval (21AI71C) 	 Quantum Computing (21AI72B) Image & Video Processing (21AI72C)
Open Elective-I	Open Elective -II
1. Big Data Analytics (21AI73OE1)	1. Cellular Technology (21AI74OE1)

	VIII Semester (Artificial Intelligence and Machine Learning)													
	Course and Course Code		Course and Teaching Course Code Course Title		ek		Examination							
SI. NO				Teac Depar	y Lectur	Tutori al	al/Dra wing	Self	Study	on in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	Seminar	21AI81	Technical Seminar		One co inter fac	ontact h action b ulty and	our /we betwee I studer	eek for n the nts.	-	03	50		50	1
2	Internship	21AI82	Research/In dustry Internship		Two contact hours /week for interaction between the faculty and students.		r	03	50	50	100	15		
	Total									06	100	50	150	16

SI .No	Semester	21-22
		(BATCH)
01	1	20
02	11	20
03	111	20
04	IV	20
05	V	18
06	VI	22
07	VII	24
08	VIII	16
	Total	160

	Generative AI					
Course Code:	21AI71A	Credits:3				
CIE: 50 Marks	SEE: 50 Marks	SEE: 03 Hrs				
Hours/Week:03Hrs (Theory)	522, 00 minutes	Total				
	Hours:42 Hrs.					
Prerequisite: The students	should have the basic knowledge of Machine	e learning				
 Course Learning Objective To understand the mathematical fundamentals that is prerequisites for a variety of courses like Data mining, Network protocols, analysis of Web traffic, Computer security, Software engineering, Computer architecture, operating systems, distributed systems, Bioinformatics, Machine learning. To develop the understanding of the mathematical and logical basis to many modern techniques for technology like machine learning, programming language 						
To study various same	npling and classification problems.					
	Modules	Teaching				
		Hours				
	Module I	8 Hrs.				
Probability mass, density, an	d cumulative distribution functions,					
conditional expectation. Apr	dications of the univariate and multivariate					
Central Limit Theorem Prot	pabilistic inequalities. Markov chains					
Random samples sampling	distributions of estimators. Methods of					
Moments and Maximum Lik	elihood					
	Module II	8 Hrs.				
Statistical inference, Introdu	ction to multivariate statistical models:					
regression and classification	problems, principal components analysis,					
The problem of over fitting i	nodel assessment.					
	Module III					
Graph Theory: Isomorphism	, Planar graphs, graph colouring, hamilton	8 Hrs.				
circuits and Euler cycles. Per	rmutations and Combinations with and					
without repetition. Specialized techniques to solve combinatorial						
enumeration problems.	-					
	Module IV	9 Hrs.				
Computer science and engine	eering applications Data mining, Network					
protocols, analysis of Web tr	affic, Computer security, Software					
engineering, Computer archi	tecture, operating systems, distributed					
systems, Bioinformatics, Ma	chine learning.					
	Module V	9 Hrs.				

Recent	Trands in various distribution functions in mathematical field of
comput	er science for varying fields like bioinformatics, soft computing,
and con	nputer vision.
Questio	on paper pattern:
1. The d	question paper will have TEN questions.
2. There	e will be TWO questions in each module, covering all the topics.
3. The s	student need to answer FIVE full questions, selecting ONE full question from each
module	
Textbo	oks:
1.	Introduction to Automata Theory, Languages and Computations – J.E.
	Hopcroft, & J.D. Ullman, Pearson Education Asia.
2.	Discrete Mathematical structures with application to Computer Science – J.P.
	Tremblay and R.Manohar.
3.	Cryptography and Network Security, William Stallings.(Second
	Edition)Pearson Education Asia.
Refere	nce:
	1. Introduction to languages and theory of computation – John C. Martin (MGH)
	2. Introduction to Theory of Computation – Michael Sipser (Thomson Nrools/Cole)
	3. Cryptanalysis of number theoretic Cyphers, Samuel S. Wagstaff Jr.Champan&
	Hall/CRC Press
	2003
	4. Network Security: The Complete Reference by Roberta Bragg, Mark Phodes –
	Ousley, Keith
	Strassberg Tata McGraw-Hill.
Course	Outcome
At the e	end of the course the student will be able to:
CO#	Course Outcome
CO1	To understand the basic notions of discrete and continuous probability.
CO2	To understand the methods of statistical inference, and the role that sampling
	distributions
	Play in those methods.
CO3	To be able to perform correct and meaningful statistical analyses of simple to
	moderate complexity.
CO4	Apply generative models to generate new content and enhance existing data.
CO5	Utilize generative AI techniques to solve complex problems in different domains

l I	Vatural Language Processing	
Course Code:	21AI71B	Credits:3
CIE: 50 Marks	SEE: 50 Marks	SEE: 03 Hrs.
Hours/Week:03Hrs (Theory)		Total
		Hours:42 Hrs.
Prerequisite: The students s	hould have knowledge of Neural Networks a	nd Machine
Learning	C	
8		
Course Learning Objective	25	
This course will enable stude	ents to	
• Define Natural Language P	rocessing	
• Explain Word level and syr	ntactic analysis	
• Analyze the natural language	ge text	
• Understand the concepts of	Text mining	
• Illustrate information retrie	val techniques.	
	Modules	Teaching
		Hours
	Module I	8 Hrs.
Overview and language m	odeling: Overview: Origins and challenges	
of NLP-Language and Gra	mmar-Processing Indian Languages- NLP	
Applications-Information H	Retrieval. Language Modeling: Various	
Grammar- based Language M	Models-Statistical Language Model.	
	Module II	8 Hrs.
Word level and syntactic	analysis: Word Level Analysis: Regular	
Expressions-Finite- State	Automata-Morphological Parsing-Spelling	
Error Detection and correcti	on-Words and Word classes-Part-of Speech	
Tagging. Syntactic Analys	is: Context-free Grammar- Constituency-	
Parsing-Probabilistic Parsing	, Ml1. III	
	Module III	0.11
Extracting Relations from	Text: From Word Sequences to	9 Hrs.
Dependency Paths: Introduction Subsequence K	Carnels for Relation Extraction	
Dependency-Path Kernel for	Relation Extraction and Experimental	
Evaluation	Relation Extraction and Experimental	
Mining Diagnostic Text Re	ports by Learning to Annotate	
Knowledge Roles:	F	
Introduction, Domain Know	ledge and Knowledge Roles, Frame	
Semantics and Semantic Rol	e Labeling, Learning to Annotate Cases	
with Knowledge Roles and E	Evaluations.	
A Case Study in Natural La	anguage Based Web Search: In Fact	
System Overview, The Glob	alSecurity.org Experience.	0.11
	Module IV	9 Hrs.
Evaluating Self-Explanatio	ns in iSTART: Word Matching, Latent	
Semantic Analysis, and To	pic Models: Introduction, ISTART:	
Teeudack Systems, 1START	Evaluation of Feedback Systems,	
Analysis to Measure the Co	ying rear-rypes Using Latent Semantic	
Cohesion Coh-Metrix Appr	reaches to Analyzing Texts I atent	

Semanti Automa Classifi Related	c Analysis, Predictions, Results of Experiments. Atic Document Separation: A Combination of Probabilistic cation and Finite-State Sequence Modeling: Introduction, Work, Data Preparation, Document Separation as a Sequence	
Mapping	g Problem, Results.	
Evolvin	g Explanatory Novel Patterns for Semantically-Based Text	
Mining	Related Work, A Semantically Guided Model for Effective	
Text Mi	ning.	0.77
	Module V	8 Hrs.
INFOR Informa Systems Retrieva Stemme	MATION RETRIEVAL AND LEXICAL RESOURCES: tion Retrieval: Design features of Information Retrieval -Classical, Non classical, Alternative Models of Information Il – valuation Lexical Resources: World Net- Frame Net- rs-POS Tagger- Research Corpora.	
Questio	n paper pattern:	
1. The q	uestion paper will have TEN questions.	
2. There	will be TWO questions in each module, covering all the topics.	
3. The s	tudent need to answer FIVE full questions, selecting ONE full que	stion from each
module.		
Textboo	oks:	
1. Na (atural Language Processing and Information Retrieval Tanveer Siddiqui, Dxford University Press, 2008	U.S. Tiwary,
2. Na	atural Language Processing and Text Mining Anne Kao and Stephen R. J Verlag London Limited 2007	Poteet Springer-
Referen	ice:	
1. Na	tural Language Understanding James Allen 2nd edition, Benjamin/Cum	mings publishing
company	r, 1995	
2. Ge	erald J. Kowalski and Mark.T. Maybury Information Storage and Retriev academic Publishers, 2000.	al systems Kluwer
Course	Outcome	
At the e	nd of the course the student will be able to:	
CO#	Course Outcome	
CO1	Apply the natural language text at word level	
CO2	Develop syntactic structures to simple and complex applications.	
CO3	Analyze the natural language text at word level and syntactic stru	ctures.
CO4	Identify the concepts of Text mining.	
CO5	Apply information retrieval techniques to develop applications.	

Mul	timedia & information Retrieval			
Subject Code:	21AI71C	Credits:3		
CIE: 50 Marks	SEE: 50 Marks	SEE: 03 Hrs.		
Hours/Week:03Hrs (Theory))	Total		
		Hours:42 Hrs.		
Prerequisite: The students structures and database	should have the basic knowledge of algorit	thms , data		
Course Learning Objective	es			
 Use the different infor 	mation retrieval techniques in various applicatio	n areas		
Apply IR principles to I	ocate relevant information collections of data			
 Analyze the performa sources 	nce of retrieval systems when dealing with unma	inaged data		
	Modules	Teaching		
		Hours		
	Module I	8 Hrs.		
Boolean retrieval. The term vo	cabulary and postings lists. Dictionaries and			
tolerant retrieval. Index constr	uction. Index compression			
	Module II	8 Hrs.		
Scoring, term weighting, and the	ne vector space model. Computing scores in a			
complete search system. Evalu	ation in information retrieval. Relevance			
feedback and query expansion				
	Module III			
XML retrieval. Probabilistic info	ormation retrieval. Language models for	8 Hrs.		
information retrieval. Text clas	sification. Vector space classification.			
	Module IV	9 Hrs.		
Support vector machines and r	nachine learning on documents, Flat clustering,			
Hierarchical clustering, Matrix	decompositions and latent semantic indexing.			
	Module V	9 Hrs.		
Web search basics. Web crav	wling and indexes, Link analysis.			
Question paper pattern:	NVO TEN questions			
2. There will be TWO quest	the rein questions.			
2. There will be 1 wO quest.	ons in each module, covering an the topics.	action from anot		
5. The student need to answe	er Frve full questions, selecting One full que			
Thoule.				
1 exibooks:	provention Patricual Christopher D. Manning and	Drabbakar		
L. Introduction to Into	Schütze, Cambridge University Pross, 2009	FIAUIIAKdI		
Ragnavan and Hinrich Schutze, Cambridge University Press, 2008.				
2. Information Storag	e and netheval systems. Theory and implementa	alioli, nowaiski,		
Reference.	ary, springer.			
1. Modern Information	n Retrieval, Ricardo Baeza-Yates. Pearson Educati	on, 2007		

Course	e Outcome
At the e	end of the course the student will be able to:
CO#	Course Outcome
CO1	Describe models like vector-space, probabilistic and language models to identify the
	similarity of query and document
CO2	Implement retrieval systems for web search tasks.
CO3	Analyze ranked retrieval of a very large number of documents with hyperlinks between
	them.
CO4	Demonstrate genesis and diversity of information retrieval situations for text and hyper
	media.

VIRTUAL REALITY ANDAUGMENTED REALITY				
Course Code:	21AI72A	Credits:3		
CIE: 50 Marks	SEE: 50 Marks	SEE: 03 Hrs.		
Hours/Week:03Hrs (Theory)	Total			
		Hours:42 Hrs.		
Prerequisite: The students should have the good knowledge of C# programming, computer graphics with open GL and real time 3D concepts.				

Course Learning Objectives: To enable the students to obtain the knowledge of Virtual Augmented Reality in the following topics.

- To understand opportunities and the main issues related to designing and developing VR/AR systems architectures, both in local and in distributed (even web-based) contexts.
- To understand development of VR/AR applications with a multimodal perspective and approach.

Modules	Teaching
	Hours
Module I	8 Hrs.
Introduction: The three I's of virtual reality, commercial VR	
technology and the five classic components of a VR system.	
Input Devices: (Trackers, Navigation, and Gesture Interfaces): Three	
dimensional position trackers, navigation and manipulation, interfaces	
and gesture interfaces.	
Module II	9 Hrs.
Output Devices: Graphics displays, sound displays & haptic feedback.	
Module III	
Modeling: Geometric modeling, kinematics modeling, physical	8 Hrs.
modeling, behavior modeling, model management.	
Module IV	8 Hrs.
Human Factors: Methodology and terminology, user performance	
studies, VR health and safety issues.	
Module V	9 Hrs.
Applications: Medical applications, military applications, robotics	

applicat	tions.		
Questio	on paper pattern:		
1. The o	question paper will have TEN questions.		
2. There	e will be TWO questions in each module, covering all the topics.		
3. The s	student need to answer FIVE full questions, selecting ONE full ques	stion from each	
module).		
Textbo	ooks:		
1. A 2. A	Augmented Reality: A Practical Guide by Stephen Cawood and Mar Augmented Reality Principles and Practices by Dieter Schma Hollerer.	k Fiala. alstiegandTobias	
Referen	nce:		
1. Unde	erstanding Virtual Reality, interface, Application and Design, Willia	m R. Sherman,	
Alan			
Craig, I	Elsevier (Morgan Kaufmann).		
2. 3D N	Modeling and surfacing, Bill Fleming, Elsevier (Morgan Kauffman).		
3. 3D C	3. 3D Game Engine Design, David H.Eberly, Elsevier.		
4. Virtual Reality Systems, John Vince, Pearson Education.			
5. What ϵ	t is virtual Reality? http://vr.isdale.com/whatisvR/frames/whatisv	(R4.1.ntml.	
6. Augmented and Mixed Reality, http://www.mic.atr.co.jp/~poup/research/ar/.			
Course	Outcomo		
At the e	and of the course the student will be able to:		
CO#			
CO#			
COI	Describe the components of the virtual reality system.		
CO2	Describe various input and output devices used for virtual Reality.		
CO3	Apply the different modeling concepts to visual virtualization.		
CO4	Analyze the performance of given simple applications related to vi	irtual reality.	
CO5	Design 3D technology with virtual programming concepts in differ applications.	rent	

	Quantum Computing	
California (C. 1		Que d'4 2
Subject Code:	21AI/2B	Credits:3
CIE: 50 Marks	SEE: 50 Marks	SEE: 03 Hrs.
Hours/Week:03Hrs (Theory)		Total
		Hours:42 Hrs.
Prerequisite: The students	should have the basic knowledge of calcul	us and linear
algebra		
Course Learning Objective	es	
• Learn about qubits and	gating operations,	
• construct quantum circ	cuits	
 learn about quantum a 	lgorithms	
	Modules	Teaching
	Woulds	Hours
	Modulo I	8 Hrs
Introduction: Elementary quar	ntum mechanics: linear algebra for quantum	0 1113.
mechanics. Quantum states in H	Hilbert space The Bloch sphere Density	
operators generalized measure	ments no-cloning theorem	
operators, generalized measure	Module II	8 Hrs
Quantum correlations: Bell in	nequalities and entanglement Schmidt	0 1115.
decomposition superdense cod	ing teleportation	
	Module III	
Ouantum cryptography : quar	ntum key distribution	8 Hrs
Comment of Programmed Annual	Module IV	9 Hrs
Quantum gates and algorithm	ns: Universal set of gates quantum circuits	<i>y</i> m .
Solovav-Kitaev theorem. Deuts	sch-Jozsa algorithm, factoring	
	Module V	9 Hrs
Programming a quantum con	nnuter : The IBMO coding a quantum	<i>y</i> m .
computer using a simulator to c	carry out basic quantum measurement and state	
analysis.	, , , , , , , , , , , , , , , , , , ,	
Ouestion paper pattern:		
1. The question paper will ha	ave TEN questions.	
2. There will be TWO questi	ons in each module, covering all the topics.	
3 The student need to answer FIVE full questions selecting ONE full question from each		
module		••••••••••
Textbooks.		
(1) Phillip Kave Raymond Laf	lamme et al An introduction to Quantum Comr	uting Oxford
University press, 2007.		uting, oxiora
(2) Chris Bernhardt. Ouantum (Computing for Evervone. The MIT Press.Cambri	dge, 2020
(3)David McMahon-Quantum Computing Explained-Wiley-Interscience . IEEE Computer Society		
(2008)		
Reference: (1) Quantum Com	putation and Quantum Information, M. A. Nielse	en &I.Chuang,
Cambridge University Press (2)	013).	
(2) Quantum Computing, A Ge	entle Introduction, Eleanor G. Rieffel and Wolfg	ang H. Polak MIT

press (2014)	
Course Outcome	
At the end of the course the student will be able to:	
CO#	Course Outcome
CO1	Learn about qubits and gating operations
CO2	Construct quantum circuits and learn about quantum algorithms
CO3	How to use Qiskit to construct and run quantum circuits on simulators
CO4	How to use Qiskit to construct quantum hardware using Python

Image & Video Processing		
Course Code:	21AI72C	Credits:3
CIE: 50 Marks	SEE: 50 Marks	SEE: 03 Hrs.
Hours/Week:03Hrs (Theory)		Total
		Hours:42 Hrs.

Prerequisite: The students should have the knowledge of Fourier transformation and probabilistic approach.

Course Learning Objectives

To enable the students to obtain the knowledge of **Image and Video Processing** in the following topics.

- Understand of the fundamental concepts related to multidimensional video processing, feature extraction, pattern analysis visual geometric modeling, stochastic optimization etc.
- Explore and contribute to research and further developments in the field of image and video processing

Modules	Teaching
	Hours
Module I	8 Hrs.
CAMERAS: Pinhole Cameras, Radiometry – Measuring Light: Light in	
Space, Light Surfaces, Important Special Cases, Sources, Shadows, And	
Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading	
Models, Application: Photometric Stereo, Interreflections: Global Shading	
Models, Color: The Physics of Color, Human Color Perception, Representing	
Color, A Model for Image Color, Surface Color from Image Color.	
Module II	8 Hrs.
Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems,	
Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as	
Templates, Edge Detection: Noise, Estimating Derivatives, Detecting Edges,	
Texture: Representing Texture, Analysis (and Synthesis) Using Oriented	
Pyramids, Application: Synthesis by Sampling Local Models, Shape from	
Texture	

	Module III	0.11
The Geo	8 Hrs.	
Human		
Clusterin	ng: What Is Segmentation?, Human Vision: Grouping and Getstalt,	
Applicat	ions: Shot Boundary Detection and Background Subtraction, Image	
Segment	ation by Clustering Pixels, Segmentation by Graph-Theoretic	
Clusterin	ng,	
	Module IV	9 Hrs.
Segmen	tation by Fitting a Model: The Hough Transform, Fitting Lines,	
Fitting	Curves, Fitting as a Probabilistic Inference Problem, Robustness,	
Segment	ation and Fitting Using Probabilistic Methods: Missing Data	
Problem	s, Fitting, and Segmentation, The EM Algorithm in Practice, Tracking	
With Li	near Dynamic Models: Tracking as an Abstract Inference Problem,	
Linear D	ynamic Models, Kalman Filtering, Data Association, Applications and	
Example	S.	
	Module V	9 Hrs.
Geomet	ric Camera Models: Elements of Analytical Euclidean Geometry,	
Camera	Parameters and the Perspective Projection, Affine Cameras and Affine	
Projectio	on Equations, Geometric Camera Calibration: Least-Squares Parameter	
Estimati	on, A Linear Approach to Camera Calibration, Taking Radial	
Distortic	n into Account, Analytical Photogrammetry, An Application: Mobile	
Robot L	localization, Model- Based Vision: Initial Assumptions, Obtaining	
Hypothe	ses by Pose Consistency, Obtaining Hypotheses by pose Clustering,	
Obtaining Hypotheses Using Invariants, Verification, Application: Registration		
In Medical Imaging Systems, Curved Surfaces and Alignment.		
Questio	on paper pattern:	
1. The c	uestion paper will have TEN questions.	
2. There	e will be TWO questions in each module, covering all the topics.	
3. The s	tudent need to answer FIVE full questions, selecting ONE full que	stion from each
module.		
Textbo	oks: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern	Approach, PHI
Learning	g (Indian Edition), 2009	
Referen	nce: 1. E. R. Davies: Computer and Machine Vision – Theory, Algorithm	ns and
Practical	ities, Elsevier (Academic Press), 4th edition, 2013.	
Course	Outcome	
At the e	nd of the course the student will be able to:	
CO#	Course Outcome	
CO1	Implement fundamental image processing techniques required for con	nputer vision
CO2	Perform shape analysis	
CO3	Implement boundary tracking techniques	
CO4	Apply chain codes and other region descriptors & Apply Hough Transfo	orm for line, circle,
	and ellipse detections	
CO5	Apply 3D vision techniques, Implement motion related techniques, Dev	velop applications
	using computer vision techniques	

	Big Data Analytics	
Course Code: 2	21AI73OE1	Credits:3
CIE: 50 Marks	SEE: 50 Marks	SEE: 03 Hrs.
Hours/Week:03Hrs (Theory)		Total
		Hours:42 Hrs.
Prerequisite: The students sho	ould have the knowledge of DBMS.	110415.12 115.
•		
Course Learning Objectives:		
To enable the students to obtain	n the knowledge of Big Data Analytics	in the following
topics.		
• To explore the fundament	tal concepts of big data analytics.	
• To learn to analyze the b	ig data using intelligent techniques.	
• To understand the application	ations using Map Reduce Concepts.	
To introduce programming	ng tools PIG & HIVE in Hadoop echo s	ystem
	Modules	Teaching
		Hours
	Module 1	8 Hrs.
INTRODUCTION TO BIG I	DATA	
Types of Digital Data, Charact	eristics of Data, Evolution of Big Data,	
Definition of Big Data, Challer	nges with Big Data, What is Big Data?:	
Volume, velocity, variety, Othe	er characteristics of Data Which are not	
Definitional Traits of Big Data	: Why Big Data? Are we just an	
information consumer or do we	e also produce information?: Traditional	
business intelligence (B1) vers	us Big data: A typical data warehouse	
environment:, A typical hadoo		
Coexistence of Big data and data warehouse, What is changing in the		
realms of Big data? .		
Big Data Analytics What is bi	g data analytics? What is big data	
analytics Isn't? Classification A	Analytics, Gratest challenges that prever	nt
business for Capitalizing on Big Data, Top challenges facing Big data,		
What kind of technologies are	we looking toward to help meet the	
challenges posed by big data?.		0 Har
		9 Hrs.
THE BIG DATA TECHNOL	OGY LANDSCAPE	AT.
NoSQL(Not Only SQL), where	e is it used?, What is it?, I ypes of NoSC	
Databases, Why NoSQL?, Advantages of NoSQL, What We Miss With		n
NOSQL !, USE OF NOSQL IN INdustry, NOSQL Vendors, SQL versus		
HADOOP: Features of Hadoon Koy Advantages of Hadoon Version of		of
Hadoon Overview of Hadoon Ecosystems, Hadoon Distributions		01
Hadoon versus SOL. Integrated Hadoon Systems Offered by Leading		
Market Vendors Cloud-Resed	Hadoon Solutions	
Introducing Hadoon Data: The	Treasure Trove Why Hadoon? Why	
not RDRMS? RDRMS variate	Hadoon Distributed Computing	
Challenges Hardware Failure		
data? History of Hadoon The	non to process this Organite store of	1
	name "Hadoop" Hadoon Overview key	7

High-level Architecture of Hadoop, use case of Hadoop, Clickstream	
Data, Hadoop Distributors, HDFS:Hadoop Distributed File System),	
HDFS Daemons, Anatomy of file read, Anatomy of file write, Replica	
placement strategy, working with HDFS Commands, Special features of	
HDFS, processing Data with hadoop, MapReduce Daemons, How does	
MapReduce work?, MapReduce Example, Managing Resources and	
applications with Hadoop YARN (Yet Another Resource Negotiator),	
Limitations of Hadoop 1.0 Architecture, HDFS Limitation, Hadoop	
2:HDFS, Hadoop2 YARN: Taking Hadoop beyond Batch, Interacting	
with Hadoop Ecosystem, pig, Hive, Sqoop, Hbase.	
Module III	
INTORDUCTION TO MongoDB	9 Hrs.
What is Mongo DB?, Why Mongo DB?, Using Java Script Object	
Notation(JSON), Creating or generation a unique key, support for	
dynamic queries, storing binary data, replication, sharding, updating	
information in-place, terms used in RDBMS and MongoDB, create	
database, drop database, data types in MongoDB, MongoDB	
Query language, insert method, save() method, Adding a new field to an	
existing document – update method, removing an existing field from an	
existing document,- remove method, finding documents based on search	
criteria-find method, dealing with NULL values, count, Limit, Sort, and	
skip, Arrays, Aggregate Function, MapReduce Function, Java Script	
Programming, Cursors in MongoDB, Indexes,	
Mongo Import, Mongo Export, Automatic Generation of unique	
numbers for the "- id" field.	
INTRODUCTION TO CASSANDRA	
Apache Cassandra, An introduction, Features of Cassandra, Peer-to-peer	
network, gossip and failure detection, partitioner, Replication Factor,	
Anti-Entropy and Read Repair, Writes in Cassandra, Hinted handoffs,	
tunable consistency, CQL Data types, CQLSH, Logging into cqlsh,	
keyspaces, CRUD(Create, Read, Update, and Delete) Operations,	
collections, Set collection, list collection, Map collection, More	
practice on Collections(SET and LIST), Using Map:Key, value pair,	
using a counter, time to live (TTL), Alter commands, Alter table to	
change the data type of a column, alter table to delete a column, drop a	
table, drop a database, import and export, export to CSV, Import from	
CSV, Import from STDIN, Export to STDOUT, Querying system	
Tables, Practice examples	
Module IV	8 Hrs.
INTRODUCTION TO MAPREDUCE PROGRAMMING	
Introduction, Mapper, Reducer, Combiner, Partitioner, Searching,	
Sorting, Compression.	
INTRODUCTION TO HIVE: What is Hive? History of Hive and	
recent releases of Hive, Hive features, Hive Integration and work flow,	
Hive data units, Hive Architecture, Hive Data Types, Primitive Data	
Types, Collection Data Types, Hive File Format, Text file, Sequential	
File, Rcfile (Record Columnar File), Hive Query	
Language(HQL), DDL (Date Definition Language) Statements,	
DML(Data Manipulation Language) Statements, starting Hive shell,	
Database, Tables, Partitions, Bucketing, Views, Sub-query, Joins,	

Aggrega	tion, Group By and Having, RCfile Implementation, SerDe,		
INTRO			
what is	pig?. Key geatures of pig. The Anatomy of pig. pig on Hadoop.		
Pig phil	osophy, Use case for Piog:ETL Processing, Pig latin overview,		
pig latin	statements, pig latin:keywords, pig latin: Identifiers, Pig latin:		
Comme	nts, Pig Latin:Case sensitivity, Operators in pig latin, Data types		
in Pig, S	Simple data types, complex data types, Running pig, Interactive		
mode, b	atch mode, Execution modes of Pig, local Mode, mapreduce		
Mode, H	IDFS Commands,	0.11	
D 1	Module V	9 Hrs.	
Relation	al Operators in PIG FILTER, FOREACH, GROUP, DISTINCT,		
$\Delta V C \mathbf{N}$	UKDER BY, JOIN, UNION, SPLIT, SAMPLE, EVAI function:		
AVO, IV	ined functions(UDE) Parameter Substitution Diagnostic		
Operato	r Word Count Example using Pig. When to use Pig? When not		
to use P	ig?. Pig at Yahoo. Pig versus Hive.		
INTRO	DUCTION TO MACHINE LEARNING		
Introduc	tion to machine learning, Machine learning definition, machine		
learning	algorithms, regression model – linear regression, clustering,		
collabor	ative filtering, Association Rule mining, Decision Tree.		
CASE S	STUDIES PNUTS: Yahoo!'s hosted data serving platform.		
Finding	a Needle in a haystack: Face book's photo storage		
Questio	n paper pattern:		
1. The q	uestion paper will have TEN questions.		
2. There will be TWO questions in each module, covering all the topics.			
3. The s	tudent need to answer FIVE full questions, selecting ONE full que	stion from each	
module.			
Textboo	oks:		
1.]	1. Big data and Analytics:Seema Acharya(Infosys ltd), Subhashini hellappan(Infosys		
ltd)			
Referen	ice:		
1. Noree	en Burlingame, The little book on Big Data, New Street publisher(e	Book)	
http://w	ww.prlog.org/11800911-just-published-the-little-book-of-big-data	-2012-	
edition.	itml on Motioff The Art of D Dreensmines: A Tour of Statistical Soft	mana Dasian	
2. Norman Matloff, The Art of R Programming: A Tour of Statistical Software Design,			
3 http://	/www.iohndcook.com/R_language_for_programmers.html		
4. http://	/bigdatauniversity.com/		
5. http://	/home.ubalt.edu/ntsbarsh/stat-data/topics.htm#rintroduction		
r			
Course	Outcome		
At the e	nd of the course the student will be able to:		
CO#	Course Outcome		
CO1	Illustrate Big-data fundamentals and challenges in big data analyt	ics.	
CO2	Demonstrate Hadoop, NOSOL frameworks to efficiently store ret	rieve and	
	process Big Data.		
CO3	Apply big data programming to manipulate, store, and analyze the	e data.	

CO4	Illustrate Hive and Pig features, its architecture and data format for DDL and
	DML operations.
CO5	Apply statistical analysis for machine learning algorithms.

	Cellular Technology	
Course Code:	21AI74OE1	Credits:3
CIE: 50 Marks	SEE: 50 Marks	SEE: 03 Hrs.
Hours/Week:03Hrs (Th	heory)	Total
		Hours:42 Hrs.
Prerequisite:		
Course Learning Objectiv	ves	
 To make student 	s familiar with fundamentals of mobile communication	n systems.
To identify the l	limitations of 2G and 2.5G wireless mobile communication	tion and the
 Design of 3G and 	d beyond mobile communication systems.	
	Modules	Teaching
		Hours
	Module I	8 Hrs.
Mobile Radio Propag	ation -Large Scale Path Loss - Free Space	
Propagation Model, Re	elating Power to Electric Field, Three Basic	
Propagation Mechanism	ms -Reflection (Ground Reflection), Diffraction,	
Scattering, Practical Li	nk Budget,	
Fading and Multipath	n -Broadband wireless channel, Delay Spread and	
Coherence Bandwidth,	Doppler Spread and Coherence Time, Angular	
spread and Coherence	Distance (fext 1-2.4) Statistical Channel Model of	
a Broadband Fading Cl	hannel	
The Cellular Concept	-Cellular Concept, Analysis of Cellular	
Systems, Sectoring		
	Module II	8 Hrs.
GSM and TDMA Tec	chnology	
GSM System overview	w- Introduction, GSM Network and System	
Architecture, GSM Cha	annel Concept.	
GSM System Operations- GSM Identities, System Operations-Traffic		
cases, GSM Infrastruct	ure Communications (User Interface)	
Module III		
CDMA Technology CDMA System Overview - Introduction, CDMA		8 Hrs.
Network and System A	Architecture	
CDIVIA Basics- CDMA	A Channel Concepts, CDMA System (Layer	
5)operations, 3GCDM	A Modulo IV	
I TE AC	wiodule i v	9 HIS.
LIE-40 Koy Enchlore for I TI	FAC OFDM SC EDE SC EDMA Channel	
Dependent Multiuser	2 40- OFDIVI, SC-FDE, SC-FDIVIA, CHAIMEI	
Dependant Multiuser R	Aesource Scheduning, Multi-Antenna Techniques,	

Flat IP	Architecture, LTE Network Architecture.		
Multi-OEDM	Carrier Modulation - Multicarrier concepts, OFDM Basics,		
Average	OFDM in LTE, Timing and Frequency Synchronization, Peak to		
Comple	xity Advantage of OFDM and SC-FDE.		
- F			
	Module V	9 Hrs.	
LTE - 4	G OFDMA and SC-FDMA - Multiple Access for OFDM		
Systems	s, OFDMA, SCFDMA, Multiuser Diversity and Opportunistic		
Schedul	ling, OFDMA and SC-FDMA in LTE, OFDMA system Design		
The LT	E Standard - Introduction to LTE and Hierarchical Channel		
Structur	e of LTE. Downlink OFDMA Radio Resources. Uplink SC-		
FDMA	Radio Resources.		
Questio	on paper pattern:		
1. The c	question paper will have TEN questions.		
2. There	e will be TWO questions in each module, covering all the topics.		
3. The s	student need to answer FIVE full questions, selecting ONE full que	stion from each	
module.			
Textbo	oks:		
Fundan	nentals of LTE"Arunabha Ghosh, Jan Zhang, JeffereyAndrews, Ri	az Mohammed,	
Pearson	education (Formerly Prentice Hall, Communications Engg and En	nerging	
Techno	logies), ISBN-13: 978-0-13- 703311-9.		
2 "Intro	duction to Wireless Telecommunications Systems and Networks"	Gary Mullet	
First Ed	lition. Cengage Learning India Pvt Ltd., 2006. ISBN -13: 978-81-3	15-0559-5.	
Referer	nce:		
1. "Wire	eless Communications: Principles and Practice" Theodore Rappapo	ort,2• Edition,	
Prentice	e Hall Communications Engineering and Emerging Technologies S	eries, 2002,	
ISBN 0	-13-042232-0.		
0 1 1 1			
2. <u>LTE</u>	tor UMTS Evolution to LTE-Advanced' Harri Holma and Antti To	oskala, Second	
Edition	- 2011, John Wiley & Sons, Ltd. Print ISBN: 9780470660003. 2		
Course	Outcome		
At the e	and of the course the student will be able to:		
CO#	Course Outcome		
CO1	Understand the Communication theory both Physical and network	king associated	
	with GSM, CDMA& LTE 4G systems.	8	
CO2	Explain concepts of propagation mechanisms like Reflection. Dif	fraction.	
	Scattering in wireless channels.	,	
CO3	Develop a scheme for idle mode, call set up, call progress handlin	ig and call tear	
	down in a GSM cellular network.		
CO4	Develop a scheme for idle mode, call set up, call progress handlin	g and call tear	
	down in a CDMA cellular network.	6 Curr (Curr	

CO5	Understand the Basic operations of Air interface in a LTE 4G system.]

PROJECT WORK				
Course Code	21AIP75	Credits:10		
CIE:50	SEE:50	SEE: 03hours		
Prerequisite: The students should have Thorough knowle	edge of Software Engineering	g and		
Mastering any one programming language.				
Course Objectives:				
• To understand the current requirement of the Industries.				
 To understand the different software development and testing methodologies. 				
• To understand and apply architectural model, data flow and control flow diagrams.				
 To acquire good documentation, demonstration skills and impact of application on society 				
Project Phase – I Comprises of: Teaching				
		Hours		

1.	Literature Survey			
2.	Requirement Analysis			
	- S/w Requirements			
	- H/w Requirements			
3.	Design Module presentation			
4.	Application			
5.	System Requirement Specification document SRS document contains synopsis, problem formulation and requirement analysis based on above factors. Document should be submitted by the end of VII Sem. Project Phase-I would be evaluated for 2 credits by means of presentation.			
Cou	rse outcomes:			
On	On completion of the course, the student will have the ability to:			
	Course Code	CO #	Course Outcome (CO)	

C01	Demonstrate the skills of performing surveys on current industrial requirements. Analyze the requirements and apply appropriate software development methodology.	
CO2		
CO3	Implement and Validate the architectural model, data flow and control flow structures.	
CO4	Demonstrate the documentation and presentation skills	
CO5	Implement the Societal and Ethical systems.	

VIII - SEMESTER

		TECHNICAL SEMINAR	
Cou	irse de	21AIS81	Credits:01
CIE	:50	SEE:	Total hours: 14 hrs
Prerequisite: The	e Studen	ts should have the knowledge of current technologies,	Creativity and
programming sk	ills.		
Course Objective	es:		
 To unde To apply To exhibit To apply 	rstand th the doc vit the pr	ne current trends in the industries umentation techniques. esentation skills and interactive skills. hysis skills	
• To apply	r the ana	IYSIS SKIIIS.	Teaching Hours
		Modules	
 Technical s modern t Technical r Co-related Report gen Seminar formulati Documer Seminar v 	urvey–ic echnolog equirem technolo eration– docum on, des on, des it should will be ev es: On co	lentifying the recent development in the gy. ent—identifying the current industrial skills. ogies—identifying the co-related technologies. opreparing the IEEE standard documents of the same. ent contains Abstract, introduction, problem ign and application based on the above factors. be submitted in the mid of semester. valuated for 1 credit by means of presentation.	14 Hours by to:
Course Code	CO #	Course Outcome (CO)	
	CO1	To demonstrate the different surveys to understand the requirements.	ne current industrial
	CO2	To analyze different technical requirements and demo	nstrate interactive skills.
	CO3	To demonstrate the presentation skills.	
	CO4	To demonstrate the analytical skills.	
	CO5	To examine the intensity of the interactive sessions.	

INTERNSHIP			
Course Code	21AII82	Credits:15	
CIE:50	SEE.50	SEE: 03hours	
Research Internship /Industry Internship of sufficient duration	encourages students early on	in their	
career. Its main goal is to give an opportunity to improve their	analytical and technical skills in	n an	
international environment. Internship can be in an industry or	at an appropriate work place.	Research	
internships and industrial internships have different purposes	and come with their set of ben	efits. A prior	
experience in any field is always preferred over a fresh start. Therefore, one of them can be selected			
depending on the interest the students have. Internships pose unexpected challenges and make students			
to think appropriately, tackle difficulties with ease and act in a scholarly way to get past the hurdles and			
practical constraints. An internship is always beneficial however good or bad it is. Internships not only			
enhance one's learning but also identifies him/her as someone who has thecommitment to approaching a			
project and completing it with or without the guidance. The internship learning is an impetus to			
professional development. While research internship is a step stone to higher studies, an industry			
internship is a pathway for a placement. Those who are self-motivated and interested in search of new			
things that are original and unique can choose a research internship. Those who are interested in the real			
industry- experience and aspire to get a job soon after graduation can choose an industry internship.			