	POOJYA DODDAPPA APPA COLLEGE OF ENGINEERING, KALABURAGI Choice Based Credit System (CBCS)												
	Scheme of Teaching and Examination $2019 - 20$ (Effective from the academic year $2019 - 20$)												
					lemester	20)							
					Teaching Hours/Week			Examination					
Sl. No.	C	ourse Code		Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	SEE Marks	CIE Marks	Total Marks	Credits
1	BS	19MA31	Computation Mechanical (Mathemati	nal Methods for Sciences cs – III)	Mathematics	2	2		03	50	50	100	3
2	PC	19AU32	Material Sc	ience and Metallurgy	Automobile Engg	3			03	50	50	100	3
3	PC	19AU33	Theory of M	Aachines	Automobile Engg	3	2		03	50	50	100	4
4	PC	19AU34	Basic Ther	nodynamics	Automobile Engg	4			03	50	50	100	4
5	PC	19AU35	Manufactur	ing Process	Automobile Engg	3			03	50	50	100	3
6	NCMC	19CV36	CIV		Civil Engineering	2			02	50	50	100	0
7	HU	19KAK37/KA N37	Kannada La	anguage	Humanities	01			01	50	50	100	1
8	PC	19AUL31	Material Sc Testing Lab	ience and Material	Automobile Engg		-	2	03	50	50	100	1
9	PC	19AUL32	Foundry an	d Forging Lab	Automobile Engg			2	03	50	50	100	1
10	PC	PC 19AUL33 Com Draw		Aided Machine b	Automobile Engg			2	03	50	50	100	1
		·	Total		-	18	04	06	27	500	500	1000	21
		Course p	prescribed to late	ral entry Diploma hold	ers admitted to III sem	nester o	f Eng	ineerin	g progra	ams			1
11		NCMC	19MAD031	Advance Mathematic	cs - I Mathematic	s 03	-		03	50	50	100	0

POOJYA DODDAPPA APPA COLLEGE OF ENGINEERING, KALABURAGI Choice Based Credit System (CBCS) Scheme of Teaching and Examination 2019 – 20 (Effective from the academic year 2019 – 20)

IV	Semester
----	----------

		Teaching Hours/Week		s/Week	Examination							
Sl. No.	SI. Course and Io. Course Code		Course Title De bartme D		Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	SEE Marks	CIE Marks	Total Marks	Credits
1.	PC	19AU41	Manufacturing Technology	Automobile Engg	3			03	50	50	100	3
2.	PC	19AU42	Fluid Mechanics	Automobile Engg	3	2		03	50	50	100	4
3.	PC	19AU43	Mechanical Measurements and Instrumentation	Automobile Engg	3			03	50	50	100	3
4.	PC	19AU44	Internal Combustion Engines	Automobile Engg	4	-		04	50	50	100	4
5.	PC	19AU45	Strength of Materials	Automobile Engg	3	2		03	50	50	100	4
6.	NCMC	19CV46	CIP	Humanities	2		-	02	50	50	100	0
7.	PC	19AUL41	Fluid Mechanics Lab	Automobile Engg			2	03	50	50	100	1
8.	PC	19AUL42	Internal Combustion Lab	Automobile Engg			2	03	50	50	100	1
9.	PC	19AUL43	Machine Shop Lab	Automobile Engg			2	03	50	50	100	1
	Total 18 04 06 27 450 450 900								21			
		Cou	rse prescribed to lateral entry D	Piploma holders admitt	ed to III s	semester	of Engin	eering p	rogram	is		·
10	NCMC	19MAD041 Advance Mathematics - I Mathematics		I Mathematics	03			03	50	50	100	0

Detailed syllabus of III & IV semester courses offered for 2019-20 entry students

Course Title: Material Science and Metallurgy						
Subject Code	CIE: 50					
Number of Lecture Hours/Week	03 (Theory)	SEE: 50				
Total Number of Lecture Hours	42	SEE Hours: 03				
Modules		Teaching Hours				
Module – I						
Concept Of Material Science: Fundament space lattice, Study of crystal structure HCP, Coordination Number and Atom different cubic structures. Crystal imp types.	ntal concepts of unit cell, e for cubic structures & mic Packing Factor for perfections-classification,	09 hours				
Diffusion: diffusion mechanism, Fic. Concepts of stress & strain, tensile prop & Brinell hardness testing.	k's laws of diffusion. erties, Rockwell, Vickers					
Module – II						
FAILURE OF MATERIALS: Fractures cone fracture, Griffith's criterion. Fat curves, Factors affecting fatigue life a Creep: creep curves, Mechanisms of materials.	08 hours					
Module - III						
Solid Solutions: Types of solid solutions formation of Solid Solution, Phase diag rule, cooling curves, construction Interpretation of equilibriums diagra- diagrams. Lever rule. (Numerical Proble Iron - Carbon Equilibrium Diagram: Ph Invariant reactions, critical temperatu- slowly cooled steels, effect of alloying	09 hours					

diagram, Ferrite & Austenite stabilizers. The TTT diagram,			
Drawing of TTT diagram forhypo-& hypereutectoid steel, Effect of alloving elements, CCT diagram			
or anoying clements, ee'r diagram.			
Module - IV			
Heat Treatment: Annealing, and its types, normalizing, hardening, tempering, Martempering, Austempering, surface hardening like case hardening, carburizing, cyaniding, nitriding Induction hardening, hardenabilty, Jominy end-quench test,	08 hours		
Module - V			
Study Of Engineering Alloys: Ferrous Alloys: Properties, composition and uses of low carbon, Mild, medium & high carbon steels. Steel designation & AISI designation. Microstructure of Cast irons, grey CI, white CI, malleable CI, and SG iron.	08 hours		
Non-Ferrous Alloys: Properties, composition and uses of the light alloys, Al & Mg & Titanium alloys. Copper & its alloys: brasses & bronzes.			
Question paper pattern:			
 Total of Ten Questions with Two questions from each Module to entire syllabus. Five full questions are to be answered selecting at least One full Module. Each question should not have more than 4 sub divisions 	be set covering the question from each		
 Text books: 1."Materials Science & Engineering- An Introduction", William D.Callister Jr. Wiley India Pvt. Ltd. 6th Edition, 2006, N. D 2."Essentials of Materials For Science And Engineering", Donald R. Askeland, Pradeep P.Phule, Thomson-Engineering, 2006. 			
 Pradeep P.Phule, Thomson-Engineering, 2006. Reference Books: "Introduction to Material Science for Engineering", 6th edition James F. Shackel ford. Pearson, Prentice Hall, New Jersy, 06. "Physical Metallurgy, Principles & Practices", V Raghavan. PHI 2nd Edition 2006, New Delhi. "Foundation of Material Science and Engineering", Smith, 3rd Edition McGraw Hill, 1997 			

E books and online course materials:

Course outcomes:

Course Code	CO #	Course Outcome (CO)
	CO1	Explain the crystal structures, their properties & defects.
	CO2	Describe diffusion mechanisms and reasons for failure of materials .
19AU32	CO3	Discuss the concepts of solid solutions, phase diagrams & phase transformation.
	CO4	Select the various heat treatment process for Engineering applications
	CO5	Identify the composition and structure of ferrous and non-ferrous materials.

Course Title: THEORY OF MACHINES				
Subject Code	19AU33	CIE: 50		
Number of Lecture Hours/Week	3 (Theory)+ 2 (Tutorial)	SEE: 50		
Total Number of Lecture Hours	42	SEE Hours: 03		
Modules	a.	Teaching hours		
Module	- I			
Simple Mechanisms: Introduction, Kin Difference between a Machine and Stru of constrained motions, Classification of chain, Mechanisms, Degrees of free Inversions of Mechanisms. Mechanisms With Lower Pairs: Intr straight line mechanisms Steering gear	e s c , 8 t			
Module- I				
Velocity Polygons: Introduction, Rela moving in straight Line, Velocity of a Velocity Method, Velocity of a me Numericals.	8			
Acceleration Polygons: Introduction, simple mechanism,	f			
Module- II	II			
CAMS: Types of cams and follower acceleration curves for uniform Veloc retardation and SHM. Cam profile for followers. Maximum velocity and m uniform velocity. Acceleration and follower. Numericals	1 1 3 5 6 8			
Balancing Of Masses: Static and dy masses in single and different planes.(E	r _			

Module -IV				
Turning Moment Diagrams And Flywheel: Introduction, Turning moment diagram for single cylinder double acting steam engine, Four stroke cycle IC Engine, Multi cylinder engine, Fluctuation of Energy, Determination of maximum fluctuation of energy, Co-efficient of fluctuation of energy, Flywheel, Numericals	9			
Governors : Introduction, Types of Governors, Centrifugal Governors, Terms used, Watt governor, Porter governor, Proell governor, Sensitiveness of Governors, Stability of Governors, Effort and power of Governors. Numericals				
Module-V				
Toothed Gears: Introduction, Advantages and Disadvantages of Gear Drive, Classification of Toothed wheels, Terms used in Gears, Law of gearing, cyclodal Teeth, Involute Teeth, Length of path of contact, Length of arc of contact, contact Ratio. Numericals	9			
Gear Trains : Introduction, Types of Gear Trains, Simple, Compound, Reverted, Epicyclic Gear trains Velocity Ratio of Gear Trains, Numericals				
 Question paper pattern: Total of ten questions with two questions from each module to be set covering entire syllabus. Five full questions are to be answered selecting at least one full question from each module. Each question should not have more than 4 sub divisions. 				
Text books: Theory of machines by Jagadishlal,				
Theory of machines by R S Khurmi and Gupta				
Theory of machines by S S Rattan				
 Reterence Books: J. S. Rao and R. V. Dukkipati, Mechanism and Machine Theory y New Age International, 1992. T. Bevan. Theory of Machines CBS Publishers an Distributors, 1984. J. E. Shighley and J. J. Uicker, Theory of Machines and Mechanisms McGrawHill, 1995. L. Meirovitch, Elements of Vibration Analysis McGraw Hill1998. W. T. Thomson and M. D. Dahlah Theory of Vibration mith Application 				
5.W. T. Thomson and M. D. Dahleh Theory of Vibration with Applica	tions			

E books and online course materials: NPTEL

Kinematics of machines-Richard Durley

Course outcomes:

Course Code	CO #	Course Outcome (CO)
	CO1	Explain basic concepts of mechanisms and applications.
	CO2	Determine velocities & accelerations of various planar Mechanisms.
19AU33	CO3	Draw profiles of cam for follower motion, calculate balancing mass in a plane.
	CO4	Draw turning moment diagrams, calculate fluctuation of energy and calculate forces in governors.
	CO5	Calculate velocity ratio of gear trains.

Course Title: Basic Thermodynamics					
Subject Code	19AU34	CIE: 50			
Number of Lecture Hours/Week	04 (Theory)	SEE: 50			
Total Number of Lecture Hours	52	SEE Hours: 03			
Мо	dules	Teaching Hours			
Mod	ule – I				
Introduction To Thermodynamics: concept of pressure, volume, specthermodynamics definition, some pathermodynamics, macroscopic and closed, open and isolated. Homog Thermodynamic equilibrium-mechthermodynamic state, properties, provintensive properties, extensive properties Temperature And Zeroth Law temperature, Zeroth law of thermodynamic of electrical resistance thermometer, the	10 hours				
scale.(Numericals)					
Mode					
Work And Heat: Mechanics, defi Thermodynamic definition of v Displacement work, as part of a sys boundary. Expressions for displacem PV diagram. Shaft work, Electrica definition; units and sign convention	10 hours				
First Law Of Thermodynamics: Joule's experiment, equivalence of heat and work, statement of first law of thermodynamics. Extension of first law to non-cyclic processes, energy as property, modes of energy. Definition of pure substance, two property rule, Sp heat at constant volume, Enthalpy, Sp. heat at constant pressure. (Numericals)					
MODU	ILE – III				
Extension Of First Law To Control steady flow energy equation (SFEE),	Volume: Derivation of Steady state its important applications like Nozzle,				

diffuser, throttle valve, heat exchanger, turbine, compressor (Numericals)	
Second Law Of Thermodynamics: Devices converting heat to work (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal energy reservoir. Direct heat engine; Schematic representation & efficiency. Reversed heat engine, schematic representation, Co-efficient of performance. Kelvin Planck statement of second law of thermodynamics; PMM II Clausius statement of II law of thermodynamics; Equivalence of the two statements, reversible & irreversible processes; Carnot cycle, Carnot principles, Thermodynamic temperature scale. (Simple Numerical)	11 hours
MODULE – IV	
Entropy: Clausius inequality; Statement, proof, application to a reversible cycle. Entropy; definition, a property. Principle of increase of entropy, Calculation of entropy using Tds relation. (Simple Numerical)	11 hours
Pure Substances: P-T & P-V diagrams, triple point & critical points. Sub- cooled liquid, Saturated liquid, mixture of saturated liquid & vapor, saturated vapor & superheated vapor states of a pure substance with water as example. Enthalpy of phase change. Dryness fraction, T-S & H-S diagrams representation of various processes on these diagrams, Steam tables & its use. Throttling calorimeter, Separating & throttling calorimeter. (Simple Numerical)	
Ideal Gases: Introduction, Ideal gas equation of state, internal energy & enthalpy as functions of temperature only. Universal and particular gas constants, Specific heats for perfect gases. Evaluation of heat, work, change in internal energy, Enthalpy and Entropy in various quasi static processes. (Numerical) Real Gases: Introduction; Vanderwaal's Equation, Vanderwaal's constants in terms of critical properties, Law of corresponding states, compressibility factor; compressibility chart, generalized compressibility chart. (Numerical)	10 hours
Question paper pattern:	
 Total of Ten Questions with Two questions from each Module to be set co syllabus. Five full questions are to be answered selecting at least One full question f Module. Each question should not have more than 4 sub divisions 	vering the entire rom each
Text books:	
1.Thermodynamics-An engineering approach, fifth edition by Yunus A Ceng Boles, TMH publishers, 7, West Patel Nagar, New Delhi-110008 2.Basic and Applied Thermodynamics by P K Nag, TMH publishers, New D	el and Michael A elhi-110008

1. Thermodynamics by S C Gupta, Pearson Education(P) Ltd, Indian branch, 482, FIE, Patparganj, Delhi-110092

2. Thermal Engineering by R K Rajput, Laxmi publications pvt Ltd, New Delhi

E books and online course materials:

Course outcomes:

Course Code	CO #	Course Outcome (CO)
	CO1	Explain thermodynamic terminology and concept of temperature.
	CO2	Discuss the concept of heat and work and first law of Thermodynamics.
19AU34	CO3	SFEE analysis for flow devices with applying first law of thermodynamics and Heat engine and refrigerators analysis using Second Law of thermodynamics
	CO4	Illustrate entropy concepts and identify the properties of Pure Substances.
	CO5	Analyze the ideal and real gas effects on thermodynamic properties

Course Title: Manufacturing Process			
Subject Code	19AU35	CIE: 50	
Number of Lecture Hours/Week	03 (Theory)	SEE: 50	
Total Number of Lecture Hours	42	SEE Hours: 03	
Modules		Teaching Hours	
Module – 1	[
Introduction: Manufacturing processes, Br Materials and their properties. Metal Casting Processes: Patterns, Mould Risering,	reak Even Analysis, Engineering ing materials, cores, gating and	08 hours	
Module – I	I		
METAL CASTING PROCESSES: Cup calculations, ladles, casting cleaning and Ca SPECIAL CASTING PROCESSES: Shel casting, Permanent mould casting, Die casti Module – I	09 hours		
Metal Forming Processes: Nature of plastic deformation, Hot working and Cold working, Rolling, Forging, Extrusion and Sheet metal operations. Special Forming Methods: Explosive forming, Electromagnetic forming Electro Hydraulic forming and powder metallurgy.		09 hours	
MODULE – Gas Welding And Cutting: Oxyacetylene w Welding technique, Oxy hydrogen welding, Electric Arc Welding And Resistance W welding equipment, Electrodes, Manual welding.	08 hours		
MODULE –	V		
Electric Arc Welding And Resistance Welding: Inert gas shielded arc welding, tungsten inert gas arc welding, Gas metal arc Welding, Arc cutting, Resistance welding-spot, seam, projection and butt welding. Other Fusion Welding Process: Thermit welding, Electro slag welding, Electron Beam welding And Laser beam welding.		08 hours	
Question paper pattern:			
1. Total of Ten Questions with Two questio	ns from each Module to be set cove	ering the entire	

syllabus.

- 2. Five full questions are to be answered selecting at least One full question from each Module.
- 3. Each question should not have more than 4 sub divisions

Text books:

1) Rao P N 'manufacturing technology '' Tata Mc Graw hill publishing co. ltd., New Delhi

Reference Books:

 Heine R W, Loper C R and Rosenthal P C, "Principles of Metal Casting", Tata McGraw Hill Publishing Co. Ltd., New Delhi
 Parmar R S "Welding processes and Technology", Khanna publishers, New Delhi
 Roy linberg, "Manufacturing process and materials of manufacture", Prentice Hall of India, New Delhi

E books and online course materials:

Course outcomes:

Course Code	CO #	Course Outcome (CO)
	CO1	classify the engineering materials and patterns.
	CO2	discuss the cupola furnace and casting process.
19AU35	CO3	explain metal forming of metal and powder metallurgy.
	CO4	demonstrate and explain gas welding and cutting, arc welding.
	CO5	compare resistance welding and other fusion welding.

Course Title: Material Science and Material Testing lab				
Subject Code	19AUL31	CIE: 50		
Number of Practical Hours/Week	02 (Practical)	SEE: 50		
Total Number of Lecture Hours	28	SEE Hours: 03		
Modules		Teaching Hours		
METALLURGY				
 (a) Specimen preparation for metallograp Inspection. (b) Study of metallurgical microscope. (a) Study of microstructure of Grey C.I. a S.G.Iron in unetched condition (b) Study of microstructure of Grey C.I. a S.G.Iron in etched condition (c) Study of microstructure of White C.I. Malleable Iron Study of microstructure of plain carbon st (a) Low carbon steel (b) Medium carbon steel (c) High carbon steel (a) Study of microstructure of Aluminium (b) Study of microstructure of Copper allow 	hic nd and teels n alloys bys	28 hours		
1. (a) Tension test on metals-stress str resilience and toughness				
 (b) Hardness test on metals-Rockwell and 2. (a) Impact test on metals-Izod and charpy (b) Shear test on metals-Direct shear stresshear 3. (a) Tests on wood-compression and bendicharacteristics Youngs modulus, mod (b) Torsion test - load deformation characteristics modulus of rupture. 				

Course outcome	es:	
On completion of	of the co	urse, the student will have the ability to:
Course Code	CO #	Course Outcome (CO)

	CO1	To demonstrate the concepts of material science and
		microstructure
	CO2	To exhibit the skills of performing experimental tasks related to
		material testing
	CO3	To share the responsibility and contribute as a member of a team
	CO4	To analyze the data and interpret data to take valid decisions
19UL31		
	CO5	To prepare report about the experimental work

Course Title: Fou	Course Title: Foundry and Forging-Lab				
Subject Code	19AUL32	CIE: 50			
Number of Practical Hours/Week	2 (Practical)	SEE: 50			
Total Number of Hours	28	SEE Hours: 03			
Modules		Teaching Hours			
TESTS OF MOULDING SAND AND C	CORE SAND:				
• Permeability test.					
• Clay content test					
• Moisture content test		28 hours			
• Grain fineness test.					
Foundry practice					
Pattern Making; pattern material, patte	rn allowances				
and types of patterns.					
• Uses of moulding tools: green sand mo					
system, risering system, core making.					
• Preparation of mould cavity using mou					
single piece pattern and split pattern					
• Study of cupola.					
FORGING:					
Basic Forging processes like upsetting, drawing down and forge welding.(at least three models)					
Text books:					
1. RAO P N, "Manufacturing technolog	1. RAO P N, "Manufacturing technology", Tata McGraw Hill Publishing				
Co.Ltd.,New Delhi.					
2. Materials and processes in Manufacturing by E.Paul Degarmo,8 th ed.PHI,2002					
3. Workshop Technology- by Hazra Cho	oudary vol-1				

1. Heine R W,Loper C R and Rosenthal P C, "Principles of Metal Casting", Tata

McGraw Hill Publishing Co.Ltd., New Delhi

2. Parmar R S ,"welding processes and technology",Khanna publishers, New Delhi

3. Roy lindberg, "Manufacturing Process and materials of manufacture",

Prentice Hall of India, New Delhi

Course outcomes	:		
On completion of	the cou	cse, the student will have the ability to:	
Course Code	CO # Course Outcome (CO)		
	CO1	To demonstrate the understanding and application concept of foundry and forging work including various tests of moulding sand and core sand	
19AUL 32	CO2	Practice foundry including pattern making, study cupola	
17/10/252	CO3	Practice basic forging processes including upsetting ,drawing down and forge welding	
	CO4		
	CO5		

Course Title: Computer Aided M/C drawing -Lab				
Subject Code	19AUL33	CIE: 50		
Number of Practical Hours/Week	02 (Practical)	SEE: 50		
Total Number of Hours	28	SEE Hours: 03		
Modules		Teaching Hours		
Introduction And Conventions:				
Introduction to machine drawing, views, simple sectional views, Com of practice for engineering dr sectional views, Conventions for representation of details-Drilled and and counter-bored holes, intern Conventions to represent standard Washers Screws, keys and cotters.	, importance of sectional nputer aided drafting Codes awing-BIS specifications- or sectioning-Conventional d tapped holes, countersunk al and external threads components- Bolts, Nuts,	28 hours		
Screw Threads and Fastners:				
ISO Metric thread(Internal & Extern thread, Seller thread, Acme thread, H headed bolt with nut and washer, Sq and washer.(Using CAD package)				
Conversions Of Pictorial Views Into				
Conversion of pictorial views of sim into orthographic views. To mark sec CAD package)				
Assembly Drawing Practice (Only				
Making free hand sketches of typica Knuckle joints, Riveted joints, coup universal,. (Using CAD package)	l subassemblies-Cotter and lings-flange, flexible,			
Text books:		L		
.1Gopalkrishna k.R., machine drawing, Subhash publications, Bangalore, 2006				
2. N.D.Bhat and V M Panchal. mach	ine drawing ,Chrotar publica	tions,Anand.1996		

1. BIS sp46-2003-"Engineering drawing practice for schools and colleges",new delhi-2003

2. k l Narayana,p Kanniah and Venkat reddy, New Age international publishers-New Delhi-2001

3.V T U - Machine Drawing

Course outcome	s:	
On completion c	of the cou	urse, the student will have the ability to:
Course Code	CO #	Course Outcome (CO)
	CO1	To convert pictorial views into orthographic projections using CAD software.
	CO2	To sketch and draw two views of Nuts and Bolts using CAD software.
19AUL33 CO		To sketch and draw two views of Riveted joints using CAD software
	CO4	To sketch and draw two views of Cotter and knuckle joints using CAD software
	CO5	To sketch and draw two views of Couplings using CAD software

Course Title: Manufacturing Technology			
Subject Code	19AU41	CIE: 50	
Number of Lecture Hours/Week	3 (Theory)	SEE: 50	
Total Number of Lecture Hours	42	SEE Hours: 03	
Modules		Teaching Hours	
Module-1	I		
Theory Of Metal Cutting: Mechanism of me formation - Merchant's circle diagram - Cal ability- Tool wear - Tool life - Cutting tool mat	etal cutting - Cutting forces - Chip culations – Tool geometry - Machine erials - Cutting fluids.		
Turning Machines: Lathe: Specification - T Calculations Capstan and turret lathe - Tooling	Fypes - Mechanisms - Operations - with examples - Copy turning lathe.	10 Hours	
Module-I	I		
Basic Machines: Shaper: Specification - Type Specification - Types - Mechanism - Calcula Operations – work and Tool holding devices, Dri			
Other Basic Machines: Broaching: Specifica Broaching process. Boring: Specification - Ty	9 Hours		
Module-I			
Other Basic Machines: Boring tool - Jig B machine elements - Lapping honing and supe	9 Hours		
Grinding Machine: Grinding: Types of Designation and selection of grinding wheel wheel.			
Module-I			
Milling Machines: Milling: Specification - Ty cutter Milling operations Milling processes.	ppes - Cutter nomenclature - Types of		
Indexing In Milling Machine: Indexing- M Differential Indexing. Simple Problems.	8 Hours		
MODULE	-V		

Non Traditional Machining Process: Principle, equipment, operation and application of Electric Discharge machining, Ultrasonic machining, Laser beam machining, Abrasive jet machining, Electron beam machining			6 Hours		
Question paper par	ttern:				
 Total of Ten Qu Five full question Module. 	estions vons are to	with Two questions from each Module to be set covering the beanswered selecting at least One full question from each	e entire syllabus.		
3. Each question sl	hould no	t have more than 4 sub divisions			
Text books:					
 S.K. Hajra Chou P.C. Sharma, "2 Production Tech Production Tech 	udry, S.K A Text B nnology I nnology I	K. Bose, "Workshop Technology Vol II" Books of Production Engineering ", S.Chand and Co.Ltd., I by R.K.Jain, Khanna Publications,2003. by HMT, Tata MavGraw Hill, 2001	V Edition, 1993.		
Reference Books: 1. De Garmo et al. 1998	, "materi	als and Processes in Manufacturing, "Prentice Hall of Indi	a, Eight Edition,		
2. Richara R. Kibb	be, John	E. Neely, Roland O. Meyer and Warrant T. White, "Maching	ine Tool Practices",		
3. N.K. Mehia, "M	ce Hall o Iachine T	Findia, 1999 Fool Design and NC", Tata McGraw Hill Publishing Co. Lt	d., 1999.		
4. Manufacturing Science by Amitabha Ghosh and Mallik, Affiliated East West press, 2003.					
E books and online	e course	materials:			
Course outcomes:					
On completion of	the cours	se, the student will have the ability to:			
Course Code	CO #	Course Outcome (CO)			
	CO1	Determine cutting force, tool geometry, wear and life			
<u> </u>	CO2	Explain working principle of lathe			
19AU41	CO3	Classify different basic machines used in the production			
	CO4	Explain milling machine and perform indexing using mill	ng machines		
	CO5 Describe non-traditional machining process				

Course Tit		
Subject Code	19AU42	CIE: 50
Number of Lecture Hours/Week	3 (Theory) + 2 (Tutorials)	SEE: 50
Total Number of Lecture Hours	42	SEE Hours: 03
Modules		Teaching Hours
Module- I		
Properties Of Fluids: Introduction, prop thermodynamic properties, surface tension a cavitation. (Numericals) Pressure And Its Measurement: Fluid press atmospheric and vacuum pressures, Sim	8 Hours	
manometers. (Numericals)		
Module -II		
Hydrostatic Forces On Surfaces: Total pressure and center of pressure, vertical plane surface submerged in liquid, horizontal plane surface submerged in liquid, inclined plane surface submerged in liquid, curved surface submerged in liquid. (Numericals)		8 Hours
Buoyancy And Floatation: Buoyancy, center metacentric height, conditions of equilibriu bodies.(Numericals)		
Module -III		
Fluid Kinematics: Types of fluid flow, continuit three dimensions (Cartesian co-ordinate syster velocity potential functions and stream function		
Dimensional Analysis: Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Buckingham's pi theorem, Raleigh's method, dimensionless numbers, similitude, types of similitude. (Numericals)		8 Hours
Module- IV		
Fluid Dynamics: Introduction, equations o motion, Bernoulli's equation from Euler's e		

real fluids. Flow measurements venturimeter, orifice meter, pitot tube. (Numericals)	
Flow Through Pipes. Major and minor losses, frictional loss in pipe flow. Darcy-	8 Hours
Equation for loss of head due to friction in pipes, Chezy's equation for loss of	
head due to line friction in pipes, hydraulic gradient and total energy lines. (Numericals)	
MODULE - V	
Laminar Flow And Viscous Effects: Reynolds's number, critical Reynolds's number, Laminar flow through circular pipe-Hagen Poiseulle's equation,	
Lammar now between paraner stationery plates. (Numericais)	10 Hours
Flow Past Immersed Bodies: Drag, Lift, expression for lift and drag, pressure drag and friction drag, boundary layer concept, displacement thickness, momentum thickness and energy thickness. Introduction to fluid machines.	10 110 113
Question pener pattern:	
Question paper pattern:	
1. Total of Ten Questions with Two questions from each Module to be set coveri syllabus.	ing the entire
2. Five full questions are to be answered selecting at least One full question from Module	each
3. Each question should not have more than 4 sub divisions	
Text books: 1. Fluid Mechanics by Oijush K.Kundu, IRAM COCHEN, EL SEVIE	ER 3rd Ed. 2005.
2. Fluid Mechanics by Dr. Bansal.R.K, Lakshmi Publications, 2004.	
3. Fluid Mechanics and hydraulics, Dr. Jagadishlal: Metropolitan Book Co-Ltd., 1	997.
4. Fluid Mechanics (SI Units), Yunus A. Cingel John M. Oimbala. Tata MaGrawH	Hill,2006.
Reference Books:	
1. Streeter V.L. and Wylie E.B., "Fluid Mechanics", McGraw Hill, 1983.	
2. Ramamirtham S., "Fluid Mechanics, Hydraulics and Fluid Machines", Dhanpat	Rai & Sons,
3. Fluid Mechanics R.K.Hegde, Niranjana Murthy Spana Book House,	
4. Kumar.D.S: Fluid Mechanics and Fluid Power Engineering," Kataria and Sons.,	,2004.
5. Fluid Mechanics R.K.Hegde, Niranjana Murthy Spana Book House,	

E books and online course materials:			
Course outcomes: On completion of the course, the student will have the ability to:			
Course Code	CO #	Course Outcome (CO)	
	CO1	Interpret the properties of fluids and pressure measurements	
	CO2	Evaluate the hydrostatic forces buoyant forces and stability	
19AU42	CO3	Demonstrate the fundamentals of Fluid kinematics	
	CO4	Formulate and solve equations of Control volumes of fluid dynamics.	
	CO5	Determine the drag and lift forces. Evaluate resistance to flow through closed conduits for incompressible fluids	

Course Title: Mechan	ation	
Course Code	19AU43	CIE: 50
Number of Lecture Hours/Week	3(Theory)	SEE: 50
Total Number of Lecture Hours	42	SEE Hours: 03
Course Objectives:		
Modul	les	Teaching Hours
Module Standards Of Measurements: Definiti Standards of length - International pr yard, Wave length standard, subdivi standard, calibration of end bars (Nu phenomena, (M- 81, M-112), Numer gauges.	08 hours	
Module	- II	
System Of Limits, Fits, Tolerance tolerance, Specification in assembly, assembly limits of size, Indian standa tolerances, definition of fits, types of f 1963), hole basis system, shaft basis o brief concept of design of gauges, we gauges -plain plug gauge, Ring Gau gauge materials. (Numerical)	09 hours	
Module	- III	
Comparators And Angular Measurem Characteristics, classification of comp Johnson Mikrokator, Sigma Comp Comparators -principles, Zeiss ultra Comparators -principles, LVDT, Pneu	nent: Introduction to Comparator, parators, mechanical comparators parators, dial indicator, Optical optimeter Electric and Electronic matic Comparators, back pressure	09 hours

gauges, Solex Comparators.	
Angular Measurements, Bevel Protractor, Sine Principle and. use of Sine bars, Sine center, use of angle gauges, (numerical) Clinometers.	
Module- IV	
Measurements And Measurement Systems: Definition, Significance generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysteresis, repeatability, linearity, loading effect, system response-times delay.	08 hours
Errors In Measurements: Classification of Errors, sources of errors.	
Transducers: Transfer efficiency, Primary and Secondary transducers, electrical, Mechanical, electronic transducers, advantages of each type transducers	
Module -V	
Measurement Of Force: Principle, analytical balance, platform balance, proving ring,	08 hours
Measurement Of Torque: Concept of Torque, Prony brake, hydraulic dynamometer, hydrostatic dynamometer, Eddy current dynamometer.	
Measurement Of Pressure: Introduction, Principle types of pressure measuring devices, use of elastic members, Bridgeman gauge, McLeod gauge, Pirani Gauge.	
Measurement Of Temperature: Introduction, Resistance thermometers, thermocouple, laws of thermocouple, materials used for construction, pyrometer, Optical Pyrometer	
Question paper pattern:	0
 Total of Ten Questions with Two questions from each Module to be set entire syllabus. Five full questions are to be answered selecting at least One full questio Module. Each question should not have more than 4 sub divisions 	covering the n from each
Text books:	
1. "Mechanical measurements & Instrumentation", A.C.Niranjan, Pooja P	ubblication

- 2. "Mechanical measurements & Metrology", T. Chandrashekhar, Subhash Publication
- 3. Test Book of Metrology, M Mahajan, Dhanpat Rai Publication , Delhi

1. Acourse in Mechanical Measurements & Instrumentation, A.K. Sawhney, Dhanapat Rai &

Co.

2. "Engineering Metrology", R.K. Jain, Khanna Publishers. New Delhi

3. "Mechanical Measurements", Beckwith, Buck & Marangoni, Narosa Publishing House.

E books and online course materials:

Course outcomes: On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
CO1		Explain and apply the basics of standards of measurement.
	CO2	Apply the knowledge of limits, fits & tolerances to design the gauges.
19AU43	CO3	Identify the uses of gauges like comparator and angle measuring instruments
	CO4	Discuss the significance of measurement system, errors, transducers, intermediate modifying and terminating devices
	CO5	Interpret measurement of field variables like force, torque and pressure Comprehend the fundamentals of thermocouple and strain measurement

Subject Code	19AU44	CIE: 50
Number of Lecture Hours/Week	4 (Theory)	SEE: 50
Total Number of Lecture Hours	52	SEE Hours: 03
Ň	Aodules	Teaching Hours
M	Iodule-I	
Introduction To Ic Engines:		
Air Standard Cycles: Introduction, limited pressure cycle. Comparison of for same compression ratio and hea	11 hours	
same heat input, same maximum pre	essure and temperature.	
Fuel Air Cycles And Actual Cycles loss due to variation of specific heat comparison of pressure volume diag cycle. Actual cycles, difference to time losses, dissociation losses, loss heat losses, exhaust blow down loss		
М	lodule-II	
Petrol And Diesel Fuels: Structure of petrol fuel, octane rating, propertie	of petroleum, refining process, properties es of diesel fuel cetane rating, additives.	
Engine Performance: Performance parameters BHP, FHP, IHP, Specific fuel consumption, volumetric efficiency, Thermal efficiency, Specific weight, heat balance sheet, testing of engines.		10 hours
М	odule-III	
Combustion In Si Engines: Flame mixture, Rate of pressure rise, norr combustion during normal combu- in SI Engines, HUCR – methods Development of combustion cham Engine combustion chambers, types	10 hours	
M	odule-IV	
Combustion In Ci Engines: Air combustion in CI engine – delay p	swirl in combustion chamber normal period – factors affecting delay period –	

diesel knock and method of controlling diesel knock combustion chamber requirements for diesel engine. Types of combustion chamber – turbulent, non- turbulent combustion chamber.	11 hours
Module-V	
Advances In I C Engine: CRDI, HCCI Engines Dual and Multifuel Engines: Combustion in dual fuel engines, Factors affecting combustion. Main types of gaseous fuels, Supercharge knock control and performance of diesel fuel engines. Characteristics of multi fuel engines. Modification of fuel system, suitability of various engines as multi fuel unit, performance of multi fuel engines.	10 hours
 Question paper pattern: Total of Ten Questions with Two questions from each Module to be set covering syllabus. Five full questions are to be answered selecting at least One full question from Module. Each question should not have more than 3 sub divisions 	g the entire each
Text books 1. A course in IC Engines – By Mathur and Sharma, Dhanpat Rai.	
 2. IC Engines – Jhon B Heywood, McGraw Hill Book, 1998 3. IC Engines- V.Ganesan, Tata McGraw Hill Book Co, 2002 	
Reference Books:	
 4. Modern Petrol Engine – By A.W.Judge, B.I. Pub. 5. I C Engines – By Litchy, MacGrawHill 6. High Speed Diesel Engines – By P.M.Heldt, Oxford and IBH. 7. I. C. Engines – By H.B. Keshwani, Standard Pub 8. I. C. Engines and air pollution- Obert, E.F, International text book publisher 	cs, 1983
E books and online course materials:	
Course outcomes: On completion of the course, the student will have the ability to:	

Course Code	CO #	Course Outcome (CO)
	CO1	Analyze air standard, fuel air and actual cycles and compare them.
	CO2	Interpret the properties and rating of The fuel, evaluate engine performance parameters.
19AU44	CO3	Express the combustion phenomena in S.I. Engines and design aspects.
	CO4	Express the combustion phenomena in C.I. Engines and design aspects
	CO5	Illustrate modifications and combustion phenomena in advanced engines

Course Title: Strength of Materials

Subject Code	19AU45	CIE: 50
Number of Lecture Hours/Week	03 (Theory) + 02 (Tutorials)	SEE: 50
Total Number of Lecture Hours	42	SEE Hours: 03
M	odules	Teaching Hours
Mo	dule – I	
Simple Stress And Strain: Stress, str of materials, Hooke's law and Poisso stress-strain relation- behaviour in te metals, bars with cross section varyi varying cross section (circular and re expression for volumetric strain, elas section and temperature stresses (inc	09 hours	
Мос	lule – II	
Bending Moment And Shear Force loads, shear forces and bending, be shear force and bending moment diagrams for statically determinate be distributed loads.	08 hours	
Mod	lule - III	
Stress In Beams: Theory of simple be equation section modulus and bend sections. Shear stresses in beams of a Deflection Of Beams: Differentiat deflection double integration method beams for point load and UDL. Mac	09 hours	
Mod	ule – IV	
Torsion Of Shafts: Torsion equation of solid & hallow circular shafts (up power. Compound Stresses: Pure shear, pla principal stresses, Mohr's circle for	08 hours	
Mod		
Thin And Thick Cylinders: Stre dimensions of cylinder. Lame's internal and external pressure (comp Columns: Short and long column formula with different end cond Rankine's formula.	08 hours	

Question paper j	pattern:			
 Total of Ten O syllabus. Five full ques 	 Total of Ten Questions with Two questions from each Module to be set covering the entire syllabus. Five full questions are to be answered selecting at least One full question from each 			
Module.	should n	at have more than 4 sub divisions		
Text books				
1. "Strength of r	naterials"	S.S.Bhavikatti, vikas publication house		
pvt.ltd., 2nd ed.,	2006			
house Banglore	2nd ed.	s K.V.KAO and G.C.KAJU, Subnash book		
3. Elements of st	trength of	materials, Ramamurtham.s, Dhanpat Rai		
publications.				
Reference Book	s:			
 "Strength of materials" Basavarajaiyya and Mahadevappa cbs publishersand distributors Delhi. "Strength of materials" Ryder Bombay 				
3. "Mechanics of solids" S.B.Junarkar, McGraw Hill charter Delhi				
4. "Mechanics of materials" S I.units Ferdinand Beer and Russel johnstan, Tata McGraw Hill –				
2003				
E books and onl	me course	e materials:		
Course outcome	s:			
On completion of	of the cour	rse, the student will have the ability to:		
Course Code	CO #	Course Outcome (CO)		
	CO1	Explain various types of loading and stresses induced.		
	CO2	Co2 Calculate SFD and BMD for different types of loads and support conditions.		
19AU45	CO3	Analysis of beams for stresses and deflection.		
	CO4	Analysis of shear stress in the inclined plane and calculate the torque in the shaft.		
	CO5	Analyze buckling phenomenon in columns and stresses in cylinder.		

Course Title: Fluid Mechanics -Lab				
Subject Code 19AUL41		CIE: 50		
Number of Hour	s/Week		2 (Practical)	SEE: 50
Total Number of	f Hours		28	SEE Hours: 03
		Modules		Teaching Hours
 Verification o Impact of jet o Reynolds experience Determination Determination Determination Sudden expansion exit losses Determination venturimeter, fluid(water) fl Performance t Performance t Determination V-notch and F Text books: 	f Bernoull on plate ar eriment of n of friction n of friction sion, sudd n of co-eff orificeme ow. est on Imp est on Cen n of co-eff Rectangula	's theorem. d cup d laminar, tr factor in pipe osses in pipe n contraction cient of discler for incomp ulse and Rea trifugal Pum cient of discler notch.	ransition and turbulent pes es viz bend, n, entry and harge of pressible action turbines. p. harge of	28 hours
Reference Books:				
E books and online course materials:				
Course outcomes: On completion of the course, the student will have the ability to:				
Course Code CO # Course Outcome (CO)			0)	
19AUL41	CO1Evaluate coefficient of discharge of venturimeter and orificemeter.			venturimeter and
	CO2	Evaluate per	formance of centrifugal	pump.

CO3	Determine the coefficient of discharge of notches.
CO4	Demonstrate the head loss due to friction in a pipe.
CO5	Evaluate head loss due to sudden enlargement and sudden contraction.

Course Title: I.C.Engine -Lab					
Subject Code		19AUL42	CIE: 50		
Number of Hours/	Week	2 (Practical)	SEE: 50		
Total Number of 1	Hours	28	SEE Hours: 03		
		Modules	Teaching Hours		
Performance Test Thermal efficiency testing.					
1.Four stroke diesel Engine					
2.Four stroke petrol engine			28 hours		
3.Multi-cylinder D	3.Multi-cylinder Diesel/Petrol Engine,				
(Morse test)					
4.Two stroke petro	ol Engin	e			
5.Variable Compression Ratio I.C.Engine.					
6.Performance test on computerized IC Engine					
test rig.					
7.Study of valve timing diagram.					
8.Study of fuel injection system.					
9.Performance test using alternative fuels.					
Text books:					
Reference Books:					
E books and online	e course	materials:			
Course outcomes: On completion of the course, the student will have the ability to:					
Course Code CO # Course Outcome (CO)					
			,		

	CO1	Demonstrate valve time diagram and draw it for two stroke and four stroke engines.
	CO2	Evaluate performance of single cylinder and multi cylinder diesel engines and draw heat balance sheet.
19AU42	CO3	Evaluate performance of single cylinder Petrol engine.
	CO4	Determine the frictional horse power by Conducting Morse test.
	CO5	Evaluate performance of engine using computerized engine test rig.

Course Title: Machine shop -Lab				
Subject Code	19AUL43	CIE: 50		
Number of Hours/Week	2 (Practical)	SEE: 50		
Total Number of Hours	28	SEE Hours: 03		
Mod	lules	Teaching Hours		
1.Operate various machines like				
2. Perform plain turning, taper t lathe machine,				
3. Perform machining operation	28 hours			
4.Demonstrate metal joining process like compressive welding				
1. Plain turning, taper turning, step turning, thread cutting, facing, knurling, eccentric turning using lathe.				
2. Cutting of gear teeth using milling machine.				
3. Practice on shaping and drilling machine.				
4. Demonstration of surface grinding.				
5. Study of non-traditional machining processes.				
Text books:		<u> </u>		
1. S.K. Hajra Choudry, S.K.Bose, "Workshop Technology Vol II".				
2. P.C.Sharma, "A Text Books of Production Engineering ", S.Chand and Co.				
Ltd., IV Edition, 1993.				
3. Production Technology by R.K.Jain, Khanna Publications, 2003.				
4. Production technology by HMT, Tata MacGraw Hill, 2001.				
Reference Books:				
1. De Garmo et al., "Materials and Processes in Manufacturing ", Prentice				
Hall of India, Eight Edition, 1998.				

 2. Richara R. Kibbe, John E.Neely, Roland O. Meyer and Warrent T. White, " Machine Tool Practices ", VI Edition, Prentice Hall of India, 1999.
 3. N.K.Mehia, "Machine Tool Design and NC ", Tata McGraw Hill Publishing Co. Ltd., 1999.
 4. Manufacturing Science by Amitabha Ghosh and Mallik, affiliated East West

Press, 2003.

Course outcon	mes:			
On completion of the course, the student will have the ability to:				
Course Code	CO #	Course Outcome (CO)		
19AUL43	CO1	To demonstrate the understanding and application concept of machining process.		
	CO2	To perform machining operation using Lathes, Milling and Shaper machine		
	CO3	To select Appropriate machining process to produce a component using different machines		
	CO4			
	CO5			