			Choi Scheme of 7	PA COLLEGE AMICS AND Cl ce Based Credit Feaching and E re for students ac	EMENT t System xaminat	TECHN (CBCS ion 202	NOLOGY 5) 1 - 2022	7	URAGI				
				VI Sem	ester								
				nt	Teaching Hours/Week			Examination					
Sl. No.		ourse and ourse Code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Self Study	Duration in hours	SEE Marks	CIE Marks	Total Marks	Credits
1	PC	19CC61	Glass Technology II	ССТ	03	-		0.5		50	50	100	2.5+0.5
2	PC	19CC62	Refractory II	CCT	04					50	50	100	4
3	PC	19CC63	Cement Technology II	ССТ	03					50	50	100	3
4	PE	19CC641	Instrumental Methods of Analysis	ССТ	03					50	50	100	3
~	TE	19CC642	Process Calculations		0.2					50	50	100	
5	IE	19CC65	Industrial Elective	COT	03					50	50 50	100	3
6 7	OE HU	19CC66 19HU02	Non Destructive Testing Aptitude	CCT Humanities	03	- 02				50 50	50 50	100 100	3
8	PC	19H002 19CCL61	Instrumental data interpretation Lab	CCT		-	02			50	50	100	1
9	PC	19CCL62	Equipment Drawing - I	ССТ			02			50	50	100	1
10	MP	19CCMP63	Mini-project		ССТ					50	50	100	2
			1 3	Total	19	02	04	0.5		500	500	1000	24
	Note:	PC: Professio	nal core, PE: Professional Electiv	ve, OE: Open E	lective, I	MP: Mi	ni-proje	ct, INT:	: Interns	ship	-		
	Internship: All the students admitted to III year of BE/B.Tech has to undergo mandatory internship of 4 weeks during the vacations of VI and VII semesters and /or VII and VIII semesters. Note Management and Entrepreneurship course shall be offered by CV, ME, IP, Auto and CCT Departments at V semester level and E&CE, CSE, IS, IT and E&E departments at VI semester level												

THEORY COURSE TITLE	: Glass technology-II		
Course Code: 19CC61	CIE: 5	0	
Number of Lectures Hours/Week: 03	SEE: 50		
Total Number of Lecture Hours: 42	SEE Hour	s: 03	
Modules		Teaching Hours	
Module-I: Fundamental concepts of glassy state, glass form annealing - introduction, generation and release of strain, to strain, dependence of strain on cooling rate, detection and m special problems in annealing of glass wares, stress optical toughened glass, strengthening of glass.	emporary and permanent neasurement of strain,	09	
Module-II: Phase diagrams of glass forming systems, wate glass, tests for resistance to chemical attack, composition at attack, alkali attack, significance of durability, strength of g elastic properties of glass, liquidus temperature of glass.	nd durability of glass, acid	08	
Module-III: Viscosity variation with temperature and compoint on viscosity curves, relation between viscosity and cryplaining, viscosity and strain, viscosity and working process viscosity of glass, surface tension of glass, heat transmission of refractive index and optical properties of glass, electrical	ystallization, viscosity and ses, measurement of on in glass, measurement	09	
Module-IV: Density and specific gravity of glass, thermal hardness, thermal endurance, thermal conductivity, heat cap glass, theory of colorization, and decolorization of glass, co oxidation and decolorizing agents, acid base concept of gla and surface coatings.	expansion of glass, pacity and specific heat of ontrol of degree of	08	
Module-V: Manufacture of laminatedsafetyglass, photosens opal, photo-form glass, photoceram glass, opal and alabaste glass, foam glass, hubbed glass, patterned glass, glass meta of glass wares, general idea about glass house refractories, plant lay out and elementary idea of manufacturing scheme	er glasses, photo chromic l seals, defects and testing testing of glass wares,	08	
Question paper pattern: Question paper shall contain five modules, each module contain one question from each module.	ntaining two questions. Stude	ents shall answer any	
Text books: 1 Modern Glass Practice – S.R. Scholes, Industrial Public	cations, 1952		
 2. Handbook of Glass Manufacture – Vol 1,2, F.V. Tooley, 3 Glass – Amol Paul, Mac Millan India Ltd., Bangalore 	Ogden Publication		
Reference Books: 1 Technical Glasses – N.B. Volf, Pitman Publishing. 2 Glass Research Methods – R.K. Day 3 Encyclopedia of Glass, Ceramic and Cement, Ed. Martin Grayson, John Wiley 4 Properties of Glasses G.W. Moorey 5 Glass Engineering Handbook – E.B. Shand, McGraw Hill Pub. 6. Glass Technology – Charan 7 Glass Science – Robert H. Doremus, John Wiley & Sons. 8 Physical properties of glass - J.E. Stanworth			

E-books and online course materials:

1. https://sgt.org/page/books

2.

https://books.google.co.in/books/about/Introduction_to_Glass_Science_and_Techno.html?id=ZeF_QLW6-xsC

3/ https://go.koppglass.com/properties-of-glass-ebook

4. https://www.koppglass.com/blog/definitive-ebook-thermal-optical-and-mechanical-properties-glass

5. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119506003

6. https://www.springer.com/gp/book/9780387733616

7/https://www.elsevier.com/books/handbook-of-glass-properties/bansal/978-0-08-052376-7

8. <u>https://onlinecourses.nptel.ac.in/noc20_ce46/preview</u>

9. https://ocw.mit.edu/courses/materials-science-and-engineering/3-091sc-introduction-to-solid-state-

chemistry-fall-2010/amorphous-materials/21-introduction-to-glasses/

10.https://freevideolectures.com/course/4452/nptel-glass-processing-technology

11. http://www.glass-academy.com/

12. https://www.collegechalo.com/news/course-on-glass-science-and-technology/

13. https://www.classcentral.com/course/swayam-glass-processing-technology-14099

14.https://www.elantechnology.com/about-us/glass-science-course/

15.https://www.elantechnology.com/about-us/glass-science-course/

Course outcomes:

On completion of the course, the student will have the ability to:

CO #	Course Outcome (CO)
CO1	Describe glassy state annealing of glass, strengthening of glass.
CO2	Explain phase diagram, liquidus temperature of glass, chemical durability, strength and elastic properties of glass.
CO3	Asses properties of glass
CO4	Outline properties, colorizing, decolorizing, surface coating and decoration of glass.
CO5	Explain glass house refractories, testing of glass ware, glass plant layout and manufacture of glass.

19CC62: REFRACTORIES – II

	Subject / Course C	Code: 19CC62	Credits	s: 03
CIE: 50 Marks SEE: 50 Marks Total Mark			·ks: 100	
Hours / Week: 3 (Lecture) Total Ho			urs: 42	
Course obje	ctives: To impart knowle	dge and enable students to und	erstand	
1. Sintering	1	<u> </u>		
	perature oxide ceramics			
3. Phase diag	<i>.</i>			
	ace, open hearth furnaces,			
5. Refractori	es for non ferrous industri			
Module		Syllabus Contents		No. of hrs.
Module 1	Sintering: Introduction	definition, types of sintering	processes study of	INO. OI III'S.
	driving force, mechanis Modes of material trans	•••••••••••••••••••••••••••••••••••••••	intering, liquid phase	9
Module 2	Preparation, properties and applications of high temperature oxide ceramics such as magnesia, alumina, zirconia, titania, urania and beryllia. Non oxide refractories such as carbides and nitrides. Cermets.			8
Module 3	 Phase diagrams related to the manufacture of conventional refractories, two and three-component systems for refractory manufacturing. Heat setting and air setting, bonding mortar, ramming masses castables, gunning material, gunning tar mixes. 			9
Module 4	Blast furnace, design and installation of blast furnace, carbon lining, modification of hot blast for high temperature. Operation of basic and acidic open hearth furnaces, soaking pits, reheating furnaces, hot metal mixer, ladles, steel melting furnaces by electricity.			8
Module 5	Refractories in non-ferrous industries, refractories in generation of steam, power, nuclear power production, refractories used in glass, coke-ovens, cement industries, gas production, etc.			8
Course outc	comes: At the end of the c	ourse, students will be able to:		
CO1	Define and explain diffe	erent types sintering		C1, C5
CO2	Appraise high temperatu	are oxide ceramics		C4
CO3	Analyze phase diagrams	3		C4
CO4	Evaluate refractories for	furnaces		A3
CO5	Appraise refractories for	r non ferrous industries		C4

Text / Reference books:

- 1. Refractories F.H.Norton
- 2. Refractories: Properties & application J.H.Chester
- 3. Refractories Kenneth Shaw
- 4. Monolithic Refractories W.D.Kingery
- 5. Refractories M. L. Mishra
- 6. Introduction to Ceramics W. D. Kingery

Question paper pattern:

Question paper shall contain FIVE modules, each module containing TWO questions. Students shall answer any ONE full question from each module.

Course Code: 19CC63 CIE: 50 Number of Lectures Hours/Week: 04 SEE: 50 Total Number of Lecture Hours: 52 SEE Hours: 03 Module-II: Crushing of raw materials, open and closed circuit crushing, construction and working features of different types of crushers, drying-grinding, energy consumption, laws of size reduction and its applications, types of area reparators. Total Hours Module-III: Prehomogenization, blending and homogenizing of raw mixes in wet and dry processes, clinkerization, rotary kiln design and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcinator systems and their applications. 08 Hours Module-V: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal fring, fring systems for coal, control of primary and secondary air Mow rate and temperature, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting Kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours		THEORY COURSE TITLE: CE	MENT TECHNO	LOGY – II		
Total Number of Lecture Hours: 52 SEE Hours: 03 Module-II: Crushing of ray materials, open and closed circuit crushing, construction and working features of different types of crushers, drying-grinding, energy consumption, laws of size 10 Hours Module-III: Prehomogenization, blending and homogenizing of raw mixes in wet and dry processes, clinkerization, rotary kiln design and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator osystems and their applications. 08 Hours Module-V: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of pramary and secondary air flow rate and temperature, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker, quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement requipment used, grinding aids, coating of grinding media, effect of cooling on characteristics of clinker, Grinding of cement requipment used, grinding aids, coating of grinding media, effect of cohang neads of thereads, each module containing two questions. Students shall answer any one question from each module. Chemical Public. Co., N.Y. 1972 1. Cement data book – Vol.I,	C	ourse Code:19CC63		CIE: 50		
Modules Teaching Hours Module-I: Crushing of raw materials, open and closed circuit crushing, construction and working features of different types of crushers, drying-grinding, energy consumption, laws of size 10 Hours reduction and its applications, types of air separators. Module-II: Prehomogenization, blending and homogenizing of raw mixes in wet and dry processes, clinkerization, rotary kiln design and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precachination, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-VI: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of finem shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of cluckr, Grinding of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Text books:	Number of	of Lectures Hours/Week: 04	SEE: 50			
Module-I: Crushing of raw materials, open and closed circuit crushing, construction and working features of different types of crushers, drying-grinding, energy consumption, laws of size reduction and its applications, types of air separators. 10 Hours Module-II: Prehomogenization, blending and homogenizing of raw mixes in wet and dry processes, clinkerization, rotary kiln design and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-VI: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of filme shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module.	Total Nu	mber of Lecture Hours: 52	SE	E Hours: 03		
crushing, construction and working features of different types of 10 Hours crushers, drying-grinding, energy consumption, laws of size 10 Hours reduction and its applications, types of air separators. 10 Hours Module-II: Prehomogenization, blending and homogenizing of raw mixes in wet and dry processes, clinkerization, rotary klin design and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of pre-calcinator systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of primary and secondary air flow rate and temperature, control of primary and secondary air flow rate and temperature, control of filame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting klih performance and clinker quality, burning techniques, instruments for control of klih operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: grapher pattern: 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours 1 Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2.		Modules		Teaching Hours		
crushers, drying-grinding, energy consumption, laws of size 10 Hours reduction and its applications, types of air separators. 10 Hours Module-II: Prehomogenization, blending and homogenizing of raw mixes in wet and dry processes, clinkerization, rotary kiln design and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of finame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement grinding media, effect of chemical and potential compounds on grindability, control of finness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement data book – Vol.I, II, III – W.	Module-I: Crus	shing of raw materials, open and clo	osed circuit			
reduction and its applications, types of air separators. Module-II: Prehomogenization, blending and homogenizing of raw mixes in wet and dry processes, clinkerization, rotary klin design and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of primary and secondary air flow rate and temperature, control of filme shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of Kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, oraious types of coeners, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: 0. 12 Hours 12 Hours 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 1. Cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of c	crushing, constr	ruction and working features of diffe	erent types of			
Module-II: Prehomogenization, blending and homogenizing of raw nixes in wet and dry processes, clinkerization, rotary klin design and constructional features, types of refractories applied, installation 10 Hours of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of primary and secondary air flow rate and temperature, control of filme shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of colores, effect of cooling on characteristics of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper pattern: 12 Hours Question paper pattern: 12 Hours 12 Hours	crushers, drying	g-grinding, energy consumption, lav	vs of size	10 Hours		
mixes in wet and dry processes, clinkerization, rotary kiln design and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcinator, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcinator systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 1. Cement data book – Vol.I, II, III – W.H. D						
and constructional features, types of refractories applied, installation of refractories, recent advances in cement manufacture. 10 Hours Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of primary and secondary air flow rate and temperature, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in centent plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 2. Cement engineer's Handbook – Von Ottolabahn, Mc			0 0			
of refractories, recent advances in cement manufacture. Image: Control of Control of the preheaters and their structural features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator systems and their applications. O8 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper pattern: 12 Hours Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 1. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 3. Croemest edusted ato book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany.		• 1				
Module-III: Principle of operation of pre-heaters and their structural features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of primary and secondary air flow rate and temperature, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper pattern: 12 Hours Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cemes utenses: 1. H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability				10 Hours		
features, the preheater by pass system, principle of precalcination, advantages of pre calcination, different types of pre-calcinator systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of primary and secondary air flow rate and temperature, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement tata book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Comment Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: I. Cement data book – Vol.I, III, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: On completion of the course, the student will have the ability to: On completion of the course, the s	,					
advantages of pre calcination, different types of pre-calcinator 08 Hours systems and their applications. 08 Hours Module-IV: Kiln burning - types of burners used for gas, oil and 12 Hours control of primary and secondary air flow rate and temperature, 12 Hours control of flame shapes and length, excess and false air and 12 Hours their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation Module-V: Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling 12 Hours O cement grinding media. Varieties of dust, dust collector systems, 12 Hours material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 5. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972		1 1 1				
systems and their applications. Image: Control of the systems of coal, firing, firing systems for coal, control of primary and secondary air flow rate and temperature, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: 12 Hours Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 1. Cement Engincer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Keferece Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: 0n completion of the course, the student will have the ability to: Co., N.Y. 1972 6. Course Outcome (CO) CO# Course Outcome (CO) CO						
Module-IV: Kiln burning - types of burners used for gas, oil and coal, improved burners for coal firing, firing systems for coal, control of primary and secondary air flow rate and temperature, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours 1 Coment data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 12. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 12. 4. Cement Lagineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. 5. Cement – Perry Von Ottolabahn, McGraw Hill, N.Y. 6. Course outcomes: 0n completion of the course, the student will have the ability to: CO # Course Outcome		•••	e-calcinator	08 Hours		
coal, improved burners for coal firing, firing systems for coal, 12 Hours control of primary and secondary air flow rate and temperature, 12 Hours control of flame shapes and length, excess and false air and 12 Hours their effect on fuel consumption, hard and soft burning, process 12 Hours parameters affecting kiln performance and clinker quality, burning 12 Hours techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on 12 Hours grindability, control of fineness, external and internal water cooling 12 Hours 12 Hours Question paper pattern: Question paper pattern: 12 Hours Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 12 Hours 12 Hours 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 12 Hours 12 Hours 4. Cement Lagineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry 12 Hours 12 Hours </td <td></td> <td></td> <td></td> <td></td>						
control of primary and secondary air flow rate and temperature, control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation 12 Hours Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1.2 Hours 12 Hours 1.2 Hours 12 Hours 12 Hours Outestion paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 12 Hours 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 2. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Accent data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. 1. Cement data book – Vol.I, II, III – W.H. Duda, G						
control of flame shapes and length, excess and false air and their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 1. Cenent Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcome: S Course Outcome (CO) Course outcomes: 0. Course fit course, the student will have the ability to: Course Outcome (CO) CO # Course Outcome (CO)						
their effect on fuel consumption, hard and soft burning, process parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant Question paper pattern: Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: 0. completion of the course, the student will have the ability to: CO # Course Outcome (CO)				12 Hours		
parameters affecting kiln performance and clinker quality, burning techniques, instruments for control of kiln operation Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcome: On completion of the course, the student will have the ability to: Course Outcome (CO)						
techniques, instruments for control of kiln operation Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper pattern: 12 Hours Question paper pattern: Question from each module, containing two questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcome: 0 0 0. completion of the course, the student will have the ability to: 0 CO # Course Outcome (CO) 0 CO1 Explain working of crushers and air separators						
Module-V: Clinker coolers: need for clinker cooling, various types of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry I. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. 2. Chernet Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. 5. Cement – Perry I. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcome: 0 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 5. 2. Course outcome: 0 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany.	-	• •				
of coolers, effect of cooling on characteristics of clinker, Grinding of cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: CO # Course Outcome (CO)	· · · ·	1				
cement: equipment used, grinding aids, coating of grinding media, effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 1. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. 6. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry 7. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. 7. Course outcomes: 0n completion of the course, the student will have the ability to: 7. CO # Course Outcome (CO) 7. Col Explain working of crushers and air separators Col						
effect of chemical and potential compounds on grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. 12 Hours Text books: . 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO # Course outcome (CO)		-	-			
grindability, control of fineness, external and internal water cooling of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant 12 Hours Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Vertice Text books: I. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. Vertice 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. S. Cement – Perry Reference Books: I. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. On completion of the course, the student will have the ability to: Co # Course Outcome (CO) C0 # Course outcome (CO)			grinding media,			
of cement grinding media. Varieties of dust, dust collector systems, material handling equipments. storage practice in cement plant Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO # Course outcome (CO)						
material handling equipments. storage practice in cement plant Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcome: 0n completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO # Explain working of crushers and air separators	•		0	12 Hours		
Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: 0n completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO1 Explain working of crushers and air separators	Ŭ	6	•			
Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 4. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: 0n completion of the course, the student will have the ability to: Course Outcome (CO) CO # Course Outcome (CO) CO1 Explain working of crushers and air separators			ement plant			
answer any one question from each module. Text books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process tech→logy of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: Course Outcome (CO) CO # Course of crushers and air separators	~ 11	A				
Text books:1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany.2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 19723. Process technology of cement manufacture – Bauverlag, Gmbh Germany.4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y.5. Cement – PerryReference Books:1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany.2.Course outcomes:On completion of the course, the student will have the ability to:Course Outcome (CO)CO1Explain working of crushers and air separators			odule containing two	o questions. Students shall		
 Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 Process technology of cement manufacture – Bauverlag, Gmbh Germany. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. Cement – Perry Reference Books: Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. Course outcomes:		question from each module.				
 2. The rotary cement kiln – K.E. Perry, J.J. Wadell, Chemical Public. Co., N.Y. 1972 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO1 Explain working of crushers and air separators 						
 3. Process technology of cement manufacture – Bauverlag, Gmbh Germany. 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO1 Explain working of crushers and air separators 						
 4. Cement Engineer's Handbook – Von Ottolabahn, McGraw Hill, N.Y. 5. Cement – Perry Reference Books: Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. Course outcomes: On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO1 Explain working of crushers and air separators 						
5. Cement – Perry Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: Course Outcome (CO)						
Reference Books: 1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcomes: On completion of the course, the student will have the ability to: Course Outcome (CO)	-		, MCGraw Hill, N. Y			
1. Cement data book – Vol.I, II, III – W.H. Duda, Gmbh Germany. 2. Course outcome: On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO1 Explain working of crushers and air separators						
2. Course outcomes: On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO1 Explain working of crushers and air separators						
Course outcomes: On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO1 Explain working of crushers and air separators						
On completion of the course, the student will have the ability to: CO # Course Outcome (CO) CO1 Explain working of crushers and air separators		005.				
CO #Course Outcome (CO)CO1Explain working of crushers and air separators			the ability to:			
CO1 Explain working of crushers and air separators	-					
			· · ·			
ι τι /	CO1 CO2					

CO3	Explain working of burners, coolers, material handlingequipments
CO4	Determine process parameters affecting kiln performance
CO5	Recognize burning techniques and instrumentation

Course Code: 19CC641	(CIE: 50
Number of Lectures Hours / Week: 03	S	EE: 50
Total Number of Lecture Hours: 42	SEE	Hours: 03
Modules		Teaching Hours
Module-I: Introduction to instrumental methods of Classification of Instrumental methods. Electroma	gnetic spectrum.	07 hours
Infrared and Ultraviolet spectroscopes - instrumen principle, single and double beam spectrometers, a and its limitations	-	07 nours
Module-II: Visible Spectrophotometer and colori Introduction, differences between spectrometer, pl colorimeter. Instrumentation of Visible spectropho principle, single and double beam Visible spectron applications and limitations. Mass spectrometer in instrumentation, working principle, applications and limitations.	hotometer, and otometer, working meters, atroduction,	07 hours
Module-III: Flame spectroscopy / Photometry - I instrumentation, working principle, applications a Atomic absorption spectrometer- Introduction, Ins working principle, applications and limitations. Ac Atomic absorption spectrometer over Emission Fla Measurement of pH.	nd limitations. strumentation, dvantages of	09 hours
Module-IV: X-Ray Diffraction methods - Introdu of XRays, studies on different types diffraction me applications and limitations. Study on Scanning el and Transmission electron microscopy- Introducti Instrumentation, working, applications and, limita transform infrared spectroscopy-Introduction, instr working, applications and limitations.	ethods, their lectron microscopy on, tions. Fourier	09 hours
Module-V: Thermal methods – Introduction to the Thermogravimetry: Introduction, recording results thermogravimetric curves, Instrumentation, worki applications. Differential thermal analysis: Introduction, factors affecting the curves, Instrume principle, applications. Differential scanning color Instrumentation, working, applications and limitat Chromatographic techniques: Introduction, Thin layer chromatography, paper chromatography, liqu chromatography.	s, factors affecting ng principle, entation, working rimetry: tions.	10 hours

Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module.

Text books:

1. Instrumental methods of analysis- N.Gray, CBS 1ST edition (2009).

2. Instrumental methods of chemical analysis - G.R.Chatwal and Sham Anand,

Himalyaya publishing house.

3. Instrumental methods of Chemical Analysis, G.W. Ewing, 5th Edition, McGraw-Hill, New York, 1988.

4. Instrumental Methods of Chemical Analysis, K. Sharma, Goel Publishing House Meerut 2000

Reference Books:

1. Instrumental Methods of Analysis" by D Skoog.

2. Principles of Instrumental Analysis" by D Skoog.

E books and online course materials:

1. Principles of Instrumental Analysis ByDouglas A Skoog; F James Holler; Stanley R Crouch

Course outco	omes:			
On completio	n of the course, the student will have the ability to:			
CO #	Course Outcome (CO)			
CO1	Classify and compare instrumental methods of analysis			
CO2	Compare spectrometer photometer and colorimeter and explain their instrumentation, working principle and applications			
CO3 Apply spectroscopy methods for ceramic characterization				
CO4	Make use of X-ray to characterize the ceramic materials and explain its instrumentation, working principle and applications			
CO5	Explain instrumentation, working, principle and application of various thermal analysis techniques			

THEORY COURSE TITLE: Industrial Elective (Iron and Steel Making Technology)				
Course Code: 19CC65A CIE: 50				
Number of Lectures Hours/Week: 03	SEE: 50			
Total Number of Lecture Hours: 42	SEE Hours: 03			

Modules	Teaching Hours
Module-I: History and Evolution of Iron and Steel Making, Scope of Iron and steel Industry in India and World Classification of Iron and steels, Phase diagram of Iron and Iron Carbide Phase Diagram Structure and properties of Iron and steel, Types of Iron and STEEL making List of major steel and iron industries in India Raw Materials I: Coke Introduction Availability of Coking CoalTypes of Coal Available Chemical Characteristics of Coals for Cokemaking Proximate Analysis Ultimate Analysis Petrographic Characteristics of Coals for Cokemaking Macerals and Mineral Matter Reflectance (Rank) of CoalOther Important Characteristics Selection of Coals for Cokemaking Assessment of Coke Quality Room Temperature Strength High Temperature Characteristics Processes Used for Cokemaking Conventional By-product Coke Ovens Non-recovery Ovens Pre-carbonisation Techniques Pre-heating of Coal Briquette Blending of Coal Selective Crushing of Coal Stamp- chargingAlternative Coking Methods	09
Module-II Raw Materials II: Iron Ore and Agglomerates Occurrence of Iron Ore Iron Ore Reserves of India Beneficiation of Iron Ore The Sintermaking Process Bedding and Blending Granulation Sintering Feed Preparation and Product Handling Fundamentals of Sintering of Iron Ores Sintering Phenomena Heat Transfer during Sintering Sinter ProductivityStructure of Sinter Influence of Sinter ChemistrPelletisation Physical and Chemical Characterisation of Lump Ore/Sinter/Pellets Physical Testing Chemical Characterisation Thermal Analysis	08

Metallurgical Tests Compression and Tumbler Strength Reduction Behaviour Reducibility Reduction under Load Softening–Melting Test Recycling of Materials in the Blast Furnace	
Blast Furnace Technology ,Blast Furnace Reactions and Process in a Nutshell ,General Constructional Features of the Furnace, Different Regions within a Blast Furnace ,Size of Blast Furnace ,Performance of Blast Furnace , ,Charging of Solid Materials from the Top ,Blast Furnace Plant and Accessories, Hot Blast Stoves ,calculations relating to blast furnace technology.	
Module-III Alternative iron making processes : sponge iron ,Smelting reduction	
BOF Operation, BOF Shop Layout and Individual Converter Components ,BOF Vessel Design and Refractory Lining, The Lance, Gas Cleaning System, Engineering Features of BOF Shops ,Refining Major Inputs for BOF Steelmaking ;-Hot Metal Coolants Flux Materials Oxygen Pre-treatment of Hot Metal Prior to Steelmaking Objectives of Pre- treatment Removal of Silicon Desulphurisation Dephosphorisation Reagents Used for Pre- treatment Soda-ash Mixture of Soda-ash and Sodium Sulphate Mill Scale, Sinter Fines, etc. Calcium Carbide and Magnesium Granules Injection of Desulphurising Agents,Hot Metal Pre-treatment Station(s) Desiliconisation Desulphurisation Simultaneous Removal of Sulphur and Phosphorus General Comments on Pre-treatment Overview of Modern Steelmaking	09
Module-IV:	
Introduction Methods Presently Used for Steel Production Oxygen Steelmaking Top-blown Converter Process Bottom-blown Converters (Q-BOP/OBM) Bath Agitated Processes Electric Steelmaking Electric Arc Furnace (EAF) Electric Induction Furnaces Secondary Steelmaking Ladle Stirring Injection Processes Vacuum Processes Reheating Processes Continuous Casting	
Secondary Steelmaking Inert Gas Purging (IGP) Deoxidation of Liquid SteelThermodynamics of Deoxidation of Molten Steel Kinetics of Deoxidation of Molten Steel The Ladle Furnace (LF) Problem of Slag Carryover The CAS-OB Process Degassing and Decarburisation of Liquid SteelThermodynamics of Degassing Reactions Kinetics of Desorption and Absorption of Nitrogen by Liquid Steel Vacuum Degassing Processes Manufacture of Ultra-Low Carbon (ULC) Steel by RH-OB Process Desulphurisation in Secondary SteelmakingThermodynamic Aspects Kinetic Aspects Injection Metallurgy (IM) Clean Steel Technology Introduction Cleanliness Control during Deoxidation Cleanliness Control during Teeming Tundish Metallurgy for Clean Steel Miscellaneous Topics Inclusion Modification Temperature Changes during Secondary Steelmaking Refractories for Secondary Steelmaking	08
Stainless Steelmaking	
Introduction Melting and Refining of Stainless Steels for Scrap and Ferroalloy-Based Processes Melting The AOD Converter Process Thermodynamics of Reactions in the AOD Process Other Processes for Stainless Steel making Direct Stainless Steelmak	
Module-V: Casting of liquid steel;- Ingot Casting of Steel, Classification of Steel Ingots Ingot Defects and Their Remedies Continuous Casting of Steel; Comparison of Continuous Casting with Ingot Casting,, construction ,working and design of tundish . Continuous casting defects and their remedies. Near-Net Shape Casting;- Thin Slab Casting Strip Casting, Beam Blank Casting. Refractories for lining of various furnaces and heat treatment equipments used in iron and steel making	08
Question paper pattern:	
Question paper shall contain five modules, each module containing two questions. S	Students shall
answer any one question from each module. Text books:	
 A first course in iron and steel making, Dipak Mazumdar, Orient Blackswan Pv (2015) 	t. Ltd.,
 Iron making and steelmaking: Theory and Practice, Ghosh Ahindra, Chatterjee Learning Private Limited, (2001) 	Amit, Phi
Reference Books:	
 Extractive Metallurgy 2: Metallurgical Reaction Processes, Alain Vignes (ISTE Extractive Metallurgy 3: Processing Operations and Routes, Alain Vignes (ISTI 	

- Extractive Metallurgy 3: Processing Operations and Routes, Alain Vignes (ISTE Ltd.,)
 An introduction to modern steel making, R. H. Tupkary, Khanna Publishers (2000)

4. An introduction to modern iron making, R. H. Tupkary, Khanna Publishers (2004)

Course outcomes:		
On completion of t	he course, the student will have the ability to:	
CO #	Course Outcome (CO)	
CO1	Summarize the history, evolution, scopeo ,classification ,phase diagram of Iron and steel Industry .	
CO2	Explain working, operation construction design aspects and calculations connecting to Blast furnace and raw materials used in blast furnace	
CO3	Asses properties of glass	
CO4	Outline properties, colorizing, decolorizing, surface coating and decoration of glass.	
CO5	Suggest refractories for lining of various furnaces used in Iron and steel Industries	

THEORY COURSE TITLE: N	ON DESTRUCTIVE T	ESTING
Course Code: 19CC66OE	CIE: 50	
Number of Lectures Hours / Week: 04		SEE: 50
Total Number of Lecture Hours: 42 SE		E Hours: 03
Course Objectives: To impart knowledge and enable studer	nts to understand	
1. Basic differences between destructive and non destructive te NDT methods	sting. how to handle vis	sual, leak and liquid penetration
2. Magnetic particle and Eddy current inspection methods , the	ir advantages and limita	ations
3. Ultrasonic NDT working methodology, their advantages and	limitations	
4. Radiographic, Neutron and Thermal NDT methods, their app	plications and limitation	IS
5. Optical, Acoustic and Microwave NDT working methodolog	gy their applications and	1 limitations
Modules		Teaching Hours
Module-I: Introduction to NDT: Selection of NDT methods. Visual inspection, leak testing, Liquid penetration inspection- advantages and limitations.		O6
Module-II: Magnetic particle inspection: Methods of generating magnetic field, types of magnetic particles and suspension liquids, steps in inspection, applications and limitations of the test. Eddy current inspection: principle of operation, process variables , inspection coils- applications and limitations the test		08
Module-III: Ultrasonic inspection: Basic equipment, characteristics of ultrasonic waves, variables during ultrasonic inspections. Inspection methods, normal incident pulse echo, angle beam pulse echo and transmission type. Method of display- A,B and C scan mode. Transducer elements, couplets, search units, contact type and immersion types inspection methods, inspection of products like casting, extrusions, rolled product, weld set- applications and limitations of the test		10
Module-IV: Radiography inspection: Principles, radiation sources. X-Rays and their generation, gamma rays and their generation. Radio graphic films. X-ray filters, image intensifiers. Industrial radiography. Image quality indicators, radiography sensitivity- applications and limitations of the test. Neutron radiography: working methodology its application and limitations. Thermal NDT: principle, inspection methods, applications and limitations of the test		10

•	al Holography: Basics of Holography, recording and fo metric techniques of inspection, procedures of inspection, ns.	08	
	raphy: working principle, applications and limitations. Microwave inciple, applications and limitations. Indian Standard for NDT.	08	
Course Outcome	: At the end of the course, students will be able to:		
Question paper s Question paper s full question from	nall contain FIVE modules, each module containing TWO questions.	Students shall answer any ONE	
Text books: 1 McGraw Hill	. Non Destructive Test and Evaluation of Materials- J Prasad and C. Education	G. Krishnadas Nair, Tata	
2. Non Destru	ctive Testing- Nagesh S.N and Jyothilakshmi R., Subhas Stores		
2. Non Destr	active Testing - Mc Gonnagle JJ – Garden and reach New York. uctive Evolution and Quality Control - volume 17 of metals hand be g instruction of Engineering materials - Davis H.E Troxel G.E wiske		
CO #	Course Outcome (CO)		
C01		lestructive testing	
CO2	Illustrate magnetic particle and eddy current testing and handle the both tests.		
CO3	Utilize Ultrasonic testing tools and outline their advantages and limitations		
CO4	Examine the components for defects using radiographic Non destructive testing tools and outline their advantages and limitations		
CO5	Explain and use Optical, Acoustic and Microwave testing methods and assess their applications and limitations		
	Course Title: INSTRUMENTAL DATA INTERPRE		

LABORATORY/ ADVANCE REFRACTORIES LAB				
Subject Code:	19CCL61	CIE: 50		
Number of Hours / Week	02	SEE: 50		
Total Number practical Hours28SEE Hours: 03				
List of experiments				

- 1 Electromagnetic radiation and electromagnetic spectrum
- 2 Origin of spectrum /arrangement for obtaining Emission and absorption spectra
- 3 Single beam and double beam infrared spectrophotometers
- 4 Double beam ultra violet spectrophotometer.
- 5 Visible Spectrophotometer
- 6 Colorimeter.
- 7 Magnetic deflection mass Spectrometer.
- 8 Arrangement for atomic absorption Spectrometry
- 9 Single and double beam atomic absorption spectrophotometer.
- 10 a) Block diagram of flame photometer.
 - b) Schematic diagram of modified flame photometer.
 - c) Schematic of internal standard photometer X-ray diffactometer
- 11 Measurement of Ph
- 12 Scanning electron microscopy
- 13 Transmission electron microscopy
- 14 Fourier Transform infrared Spectroscopy
- 15 Thermogravimetry
- 16 Differential thermal analysis
- 17 Differential scanning colorimetry
- 18 Thin layer chromatography
- 19 Paper chromatography
- 20 Liquid and gas chromatography.
- 21 Determination of surface area by BET Method shape of building bricks for construction
- 22 Synthesis of engobe

Course outcomes:

On completion of the course, the student will have the ability to:

CO #	Course Outcome (CO)	
CO1	Understanding about electromagnetic spectrum and electromagnetic radiation	
CO2	Understanding about infrared, ultra volet, visible spectrometer	
CO3	Understanding about colorimeter, flame photometer	
CO4	CO4 Understanding about x-ray difractometer	
CO5	Understanding about TG,DTA, FTIR, Chromatography	

19CCL62: EQUIPMENT DRAWING - I

Subject / Course Code: 19CCL62		Credits: 01		
CIE: 50 M	farks	SEE: 50 Marks	Total Marks: 100	
	Hours / Week: 2 (Practical)		Total Hours: 28	
Course objectives:	To impart know	vledge and enable students to underst	and:	
1. Drawing of ceram	nic equipment			
2. Elementary desig	n of ceramic eq	uipment		
 Syllabus: Drawing 1. Crushers 2. Grinders 3. Ultrafine grinders 		g equipment & elementary design wh	erever possible:	
4. Mixing Machine				
5. Blast furnace / ret	• •			
6. Bessemer / LD co				
7. Open hearth furnace				
8. Pyrometers9. Filter press				
9. Filter press10. Powder blend	ers			
		e course students will be able to:		
CO1 Sketc	h ceramic equip	ment	C3	
CO2 Perfor	rm equipment c	alculations	C4	