POOJYA DODDAPPA APPA COLLEGE OF ENGINEERING, KALABURAGI B.E. in CERAMICS AND CEMENT TECHNOLOGY Choice Based Credit System (CBCS) Scheme of Teaching and Examination 2021-2022 Effective for students admitted in 2018-2019												
	VIII Semester											
				ig ent	Teaching Hours/Week			Examination				
Sl. No.		Course and Course Code	Course Title	Teachin Departme	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	SEE Marks	CIE Marks	Total Marks	Credits
1	PC	18CC81	Design with Ceramics	ССТ	03	-			50	50	100	3
	PE	18CC821	Special Glasses & Glass Ceramics	CCT					50	50	100	
2		18CC822	Process control		03	-						3
		18CC823	Structural ceramics									
3	PC	18CC83	Nano Materials	CCT	03	-			50	50	100	3
4	PE	18CCCM84	Certification Course (NPTEL/ MOOC)									1
5	PROJ	18CCP85	Project Work Phase - II	CCT					50	50	100	11
6	INT	18CCIN86	Internship	(Completed during the intervening vacations of VI and VII semesters and /or VII and VIII semesters.)				1				
Total 09 200 200 400 22												
Note: PC: Professional core, PE: Professional Elective, OE: Open Elective, MP: Mini-project, INT: Internship.												
Internship: All the students admitted to III year of BE/B.Tech has to undergo mandatory internship of 4 weeks during the vacations of VI and VII semesters and /or VII and												
VIII semesters.												

THEORY COURSE TITLE: Design With Ceramics				
Course Code: 19CC81	CIE: 50			
Number of Lectures Hours/Week: 04	SEE: 50			
Total Number of Lecture Hours: 52	SEE Hours: 03			
Modules	Teaching Hours			
Module 1 Introduction to deformation of solids: Elementary idea and JKR model for deformation of spherical solids in con comparison and estimation of parameters.[1]	of Hertz model ntact and their			
Young's modulus and strength of perfect solids and the strength.[2]	eoretical			
Module 2 Introduction to plastic, elastic and visco-elastic deforma plastic deformation of rock salt structure crystals , plas alumina crystal, creep of single crystal and polycrystallin Elastic modulii, an-elasticity, Brittle Fracture and crack fatigue fracture effects of micro-structure [2][3] [4]	11 ation of solids, tic deformation of ne ceramic. propagation, static			
Module 3 Design Consideration:-Requirements of application, pro fabrication limitations, reliability requirements and cost Design approaches: - Empirical design, Deterministic de design approach, Comparison of all three design approa Elements of Weibull statistics and its use in design and limitations of Weibull statistical design approach.[3][5][perty limitations, sign, Statistical aches advantages and 41			
Module 4 Failure analysis:- Location of fracture origin, techniques elementary idea about determining failure cause using fracture analysis[3]	of fractography, modern tools for			
Module 5 Material Selection: - General parameters considered fo materials, parameters for selection of material for insul refractory furnace lining, ceramics seals and high tempe exchangers, Thermal barrier coatings. [3][6]	r selection of ating and erature heat			
Question paper pattern: Question paper shall contain five modules, each mo answer any one question from each module. Text books:	odule containing two questions. Students shall			
 H. J. Butt, K. Graf, and M. Kappl, <i>Physics and Chemistry of Interfaces</i>. Wiley, 2006. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, <i>Introduction to ceramics</i>, Second edi. John-Wiley and Sons, Inc, 1976. D. Richerson, <i>Modern Ceramic Engineering: Properties, Processing, and Use in Design,</i> <i>Third Edition</i>. Taylor & Francis, 1992. A. O. Surendranathan, <i>An Introduction to Ceramics and Refractories</i>. 2014. 				
[5] M. Barsoum and W. Barsoum, <i>Fundamental</i> Reference Books:	s of Ceramics. Taylor & Francis, 2002.			

[6] V. Sankar, "Thermal Barrier Coatings Material Selection, Method of Preparation and Applications - Review," *Int. J. Mech. Eng. Robot. Res.*, vol. 3, no. 2, pp. 510–517, 2014.

E-books and online course materials:

1. <u>https://uomustansiriyah.edu.iq/media/lectures/5/5_2016_05_01!08_27_09_PM.pdf</u> 2. https://www.youtube.com/watch?v=7Be7hGvqoAg

Course outcomes:					
On completion of the course, the student will have the ability to:					
CO #	CO # Course Outcome (CO)				
		level			
CO1	Apply Hertz model, JKR theory for powder compaction of spherical	3			
	particles and summarize Young's modulus and theoretical strength.				
CO2	Explain plastic, elastic and visco-elastic and permanent deformation of	3			
	Single crystals, polycrystalline ceramics, and effect of micro-structure on				
	strength of ceramics.				
CO3	Appraise design considerations and explain three methods of design	4			
	approaches based on empirical design, deterministic design and Weibull				
	statistical approach. Numerical problems based on Weibull statistical				
	method				
CO4	Compare methods of failure analysis and fractography and their	4			
	comparison and ability to summarize fractography.				
CO5	Summarize selection of materials for various applications	3			

	Course Title: STRUCTUR	AL CERAMICS					
Course Code	19CC823	CIE: :	50				
Number of Lecture Hours/Week	Number of Lecture3SEE:Hours/Week3SEE:						
Total Number of Lecture Hours	otal Number of Lecture Hours42SEE Hours: 03						
Prerequisite	Prerequisite						
 Course Objectives: To impart knowledge and enable students to understand 1. Enable students to define and classify structural ceramics and explore theirapplication. 2. Enable to apply theoretical aspects to explain the toughness and tougheningmechanism. 3. Enable to understand the properties and applications of composites, oxide andnon- oxide materials 4. Describe methods of synthesis and explain fabrication of oxide and non-oxideceramics for structural ceramics 							
	Modules		Teaching Hours				
Module I							
Introduction & Classific ceramic materials in s biological Application.	10 hours						
Module II							
Ceramic films and coatin coatings, bio-compatible	06 hours						
Module III							
Fracture mechanics of Co methods of measurement Transfer, Crack deflection	10 hours						
Module IV							
Properties and applicati zirconia, forsterite, A transformation and transf Calcium Phosphate based	08 hours						
Module V							
Processing and fabri- of Composite, preparation matrix composites, ceran	08 hours						
composites. Study of fiber	3						

Question paper pattern: Question paper shall contain FIVE modules, each module Containing TWO questions. Students shall answer any ONE full question from eachmodule.

Text books:

- 1. Barsoum, M., & Barsoum, W. (2002). Fundamentals of Ceramics. Taylor & Francis.
- 2. Basu, B., & Balani, K. (2011). Advanced Structural Ceramics. Americanceramic society: Wiley.

3. Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976). Introduction toceramics. (Second edition). John-Wiley and Sons,

4. Richerson, D. (1992). Modern Ceramic Engineering: Properties, Processing, andUse in Design (Third Edition.). Marcel Dekker Inc.

5. Singer, F., & Singer, S. S. (1963). Industrial ceramics. The University of Michigan: Chemical Publishing Co.

Reference Books:

E books and online course materials:

Course outcomes:

On completion of the course, the student will have the ability to:

Course	CO #	Course Outcome (CO)				
	0.0					
Code						
	CO1	Apply theoretical aspects to explain the applications of ceramics for structural applications applications(load bearing Application).				
	CO2	Explain various coating methods used for coating ceramics				
	CO3	Apply knowledge of toughening mechanisms to calculate parameters fracture toughness, modulus of rupture modulus of elasticity, stress and strength of ceramics				
	CO4	Explain the properties of oxide and non-oxide ceramics and composites to recognize there appropriate applications				
	CO5	Illustrate methods of synthesis, processing and fabrication of various oxide and non-oxide ceramics for structural ceramics				

THEORY COURSE TITLE: NANO MATRIARIALS				
Course Code: 19CC83	CIE: 50			
Number of Lectures Hours/Week: 03	SEE: 50			
Total Number of Lecture Hours: 42	3			
Modules		Teaching Hours		
MODULE I History and emergence of nano-technology and nano ma classification of nano-materials, challenges in nano-techn approaches, physical chemistry of solid surfaces:-surface electro static stabilization, steric stabilization (solvent an interactions.	terials, necessity of nano-materials, nology, bottom-up &top-down e energy, chemical potential, and d polymer, mixed steric and electric	9		
MODULE II Zero dimensional nano structures and nano materials, na nucleation, synthesis of metallic nano particles i.e. gold, reagents, polymer stabilizers), synthesis of oxide nano pa release of ions, solid state phase aggregation, paper phase combustion, solution combustion synthesis, synthesis ins , aerosol synthesis, template based synthesis.	no particles through homogegenous silver (influence of reduction articles:-sol-gel process, controlled e reactions, hydro-thermal ide micells or using micro emulsions	8		
MODULE III. One-dimensional nano structures:-nano wires and nano r growth, vapour liquid solid growth (VLS), template base lithography ,two dimensional nano structures, fundament physical vapor deposition (evaporation and sputtering), c layour deposition, sol-gel films.	ods:-evaporation and condensation d synthesis, electro spinning, tals of film growth, vaccum signs, hemical vapor deposition, atomic	8		
MODULE IV Special nano materials:-carbon fullerene and carbon nano materials, core cell structure, nano composites, character materials: X-ray diffraction, SEM, TEM, gas adsorption, resonance, super para- magnetism, electrical conductivity properties.	o tubes, micro and mesoporous ization and properties of nano optical spectroscopy, surface Plasma y, melting point, mechanical	8		
MODULE V Nano structures fabricated by physical techniques, lithog contact printing, applicatons of nano materials: electronic band gap engineered quantum devices, nano mechanics,	raphy, photo lithography, micro cs, biological applications, catalysis, photonic crystals and others	9		
Question paper pattern: Question paper shall contain five modules, each module containing two questions. Students shall answer any one question from each module.				
 Text books: Guozhong Cao Nanostructures and Nanmaterials Synthesis, Properties and Applications. Imperial College Press 57 Shelton streets Covent Gardon Londen. WC2H9HE, <u>published</u>: 8 April 2004 K.W. Kolasinski, "Surface Science: Foundations of Catalysis and Nanoscience", Wiley, 2002. G.A. Ozin and A.C. Arsenault, "Nanochemistry : A chemical approach to nanomaterials", Royal Society of Chemistry, 2005. 				

 Edward L. Wolf, "Nanophysics and Nanotechnology - An Introduction to Modern Concepts in Nanoscience" Second Edition, John Wiley & Sons, 2006.

Reference Books:

- 1. Vladimir P. Torchilin (2006) Nanoparticulates as Drug Carriers, Imperial College Press.
- 2. M. Reza Mozafari (2007) Nanomaterials and Nanosystems for Biomedical Applications, Springer.
- 3. Nanotechnology Basic Science & Emerging Technologies, Chapman & Hall/CRC 2002
- 4. Nanomaterials Nanotechnologies and Design: An introduction for engineers and architects, Micheal F. Ashby, P.J. Ferreria, D.L.Schodek.

E-books and online course materials:

1. https://www.google.co.in/books/edition/Nanostructures_Nanomaterials/Ez1dYxO_ma8C?hl=en&gbpv=1&printsec=frontcover

Course outcomes:

On completion of the course, the student will have the ability to:					
CO #					
CO1	Describe the necessity, applications, stabilization nanomaterials and their classification				
CO2	Explain the synthesis of Zero dimensional nanomaterials by various methods.				
CO3	Explain the synthesis of one and two dimensional nanomaterials (nano wires and nanosl	neets) by various			
	methods.				
CO4	Investigate and interprete characterization data of nanomaterials				
CO5	Analyze to application of nanomaterials and its products				