CURRICULUM

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING(B.E in COMPUTER SCIENCE & ENGINEERING)

21 Series

POOJYA DODDAPPA APPA COLLEGE OF ENGINEERING (An autonomous college under VTU) KALABURAGI

About the institution: The Hyderabad Karnataka Education (HKE) society founded byLate Shri Mahadevappa Rampure, a great visionary and educationist. The HKE Society runs 46 educational institutions. Poojya DoddappaAppa College of Engineering, Gulbarga is the first institution established by the society in 1958. The college is celebrating its golden jubilee year, setting new standards in the field of education and achieving greater heights. The college was started with 50% central assistance and 50% state assistance, and a desire to impart quality technical education to this part of Karnataka State. The initial intakewas 120 with degree offered in three branches of engineering viz, Civil, Mechanical and Electrical Engineering. Now, it houses 11 undergraduate courses, 10 post Graduate courses and 12 Research centers, established in Civil Engg., Electronics & Communication Engg, Industrial & Production Engg, Mechanical Engg, Electrical Engg., Ceramic Cement Tech., Information Science & Engg., Instrumentation Technology, Automobile Engg., Computer Sc. and Engg., Mathematics and Chemistry All the courses are affiliated to Visveswaraya Technological University, Belgaum. At present the total intake at UG level is 980 and PG level 193.

The college receives grant in aid funds from state government. A number of projects have been approved by MHRD /AICTE, Govt. of India for modernization of laboratories. KSCST, Govt. of Karnataka is providing financial assistance regularly for the student's projects.

The National Board of Accreditation, New Delhi, has accredited the College in the year 2005-08 for 09 UG Courses out of which 08 courses are accredited for three years and 01 course is accredited for five years. And second time accredited for Six Course in the year 2009-2012

Our college is one among the 14 colleges selected under TEQIP, sponsored by World Bank. It has received a grant of Rs 10.454 Crores under this scheme for its development. The institution is selected for TEQIP phase II in year 2011 for four years. Institution is receiving grant of Rs 12.50 Crores under TEQIP Phase -II scheme for its development and selected for TEQIP-III as mentoring Institute for BIET Jhansi(UP).

Recognizing the excellent facilities, faculty, progressive outlook, high academic standards and record performance, the VTU Belgaum reposed abundant confidence in the capabilities of the College and the College was conferred Autonomous Status from the academic year 2007-08, to update its own programme and curriculum, to devise and conduct examinations, and to evaluate student's performance based on a system of continuous assessment. The academic programmers are designed and updated by a Board of Studies at the department level and Academic Council at the college level. These statutory bodies are constituted as per the guidelines of the VTU Belgaum. A separate examination section headed by aController of Examinations conducts the examinations. At present the college has acquired the Academic autonomous status for both PG and UG courses from the academic year 2007-08 and it is one among the six colleges in the state of Karnataka to have autonomous status for both UG and PG courses.

One of the unique features of our college is, it is the first college in Karnataka State to start the Electronics and Communication Engineering branch way back in the year 1967, to join NIT Surathkal and IISc, Bangalore. Also, it is the only college in the state and one among the three colleges across the country, offering a course in Ceramic and Cement Technology. This is the outcome of understanding by faculty and management about the basic need of this region, keeping in view of the available raw material and existing Cement Industries.

Bharatiya Vidya Bhavan National Award for an Engineering College having Best Overall Performance for the year 2017 by ISTE (Indian Society for Technical Education). In the year 2000, the college was awarded as Best College of the year by KSCST, Bangalore in the state level students projects exhibition.

The college campus is spread over 71 acres of land on either side of Mumbai-Chennai railway track and has a sprawling complex with gardens and greenery all around.

About the department: The Computer Science and Engineering department was started in the year 1984 with an intake of 40 students for UG. The department has seen phenomenal growth and now the department has increased UG intake to 120 students and offering two Post Graduation programmes: PG (Computer Science and Engineering with an intake of 25 students) and PG(Computer Network and Engineering with an intake of 18 students). The department is offering research program under its recognized research center. The department is having state-of-the-art computing facilities with high speed internet facilities and laboratories. The department library provides useful resources like books and journals. The department has well qualified and experienced teaching faculty. The department has been conducting several faculty development programs and student training programs.

Vision of the Institution

To be an institute of excellence in technical education and research to serve the needs of the industry and society at local and global levels.

Mission of the Institution

- To provide a high quality educational experience for students with values and ethics that enables them to become leaders in their chosen professions.
- To explore, create and develop innovations in engineering and science through research and development activities.
- To provide beneficial service to the national and multinational industries and communities through educational, technical, and professional activities

Vision of the Department

• To become a premier department in Computer education, research and to prepare highly competent IT professionals to serve industry and society at local and global levels.

Mission of the Department

- To impart high quality professional education to become a leader in Computer Science and Engineering.
- To achieve excellence in Research for contributing to the development of the society.
- To inculcate professional and ethical behaviour to serve the industry.

Program Educational Objectives (PEO):

PEO1:	To prepare graduates with core competencies in mathematical and engineering
	fundamentals to solve and analyze computer science and engineering problems
PEO2:	To adapt to evolving technologies and tools for serving the society
PEO3:	To perform as team leader, effective communicator and socially responsible
	computer professional in multidisciplinary fields following ethical values
PEO4:	To encourage students to pursue higher studies, engage in research and to
	become entrepreneurs

Program Outcomes:

- 01. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 02. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 03. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 04. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 05. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 06. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 07. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 08. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 09. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one,,s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

PSO1:	Acquire competency in hardware and software working principles to analyze and solve computing problems.
PSO2:	Design quality software to develop scientific and business applications following Software Engineering practices.
PSO3:	Apply cutting edge technologies using modern tools to find novel solutions ethically to existing problems.

Hyderabad Karnataka EducationSociety's

PoojyaDoddappaAppa Engineering College,Kalaburagi (An Autonomous Institution) Aiwan-E-Shahi Area, Kalaburagi, Karnataka 585102 Department of Computer Science & Engineering

SCHEMEOFTEACHINGFORIII SEMESTER-21SERIES

				eaching	Hours/	Week		E	xaminati	on	
Sl. No	CourseC ode	CourseTitle	TheoryLe cture(L)	Tutorial(T)	Practical	Self Study(S)	Duration inhours	CIEMarks	SEEMarks	TotalMarks	Credits
1	21MA31D	Computational Methods for Computer Science	3	0	0	0	3	50	50	100	3
2	21CS32	Mathematical Foundations of Computer Science	3	0	0	0	3	50	50	100	3
3	21CS33	Data Structures	3	0	0	0	3	50	50	100	3
4	21CS34	Microprocessors and Microcontrollers	3	0	0	0	3	50	50	100	3
5	21HU35	Constitution of India & Professional Ethics	2	0	0	0	3	50	50	100	1
6	21INT36	Summer Internship-I	0	0	0	0	0	50	0	50	2
7	21CSAE36A	HTML and CSS	0	0	2	0	3	50	50	100	1
8	21UHV36B	Universal Human Values –I	0	2	0	0	2	50	50	100	1
9	21CSL31	Logic Design Lab	0	0	2	0	3	50	50	100	1
10	21CSL32	Data Structures Lab	0	0	2	0	3	50	50	100	1
11	21CSL33	Microprocessors and Microcontrollers Lab	0	0	2	0	3	50	50	100	1
		Total	14	2	8	0	29	550	500	1050	20

SCHEMEOFTEACHINGFORIVSEMESTER-21 SERIES

			To	eaching ee	gHours/ k	W		Ex	aminatio	on	
Sl.No.	Course Code	CourseTitle	Theory Lecture(L)	Tutorial(T)	Practical	Self Study(S)	Duration inhours	CIE Marks	SEEMarks	TotalMarks	Credits
1	21MA41D	Applied Statistics	3	0	0	0	3	50	50	100	3
2	21CS42	Finite Automata And Formal Language	3	0	0	0	3	50	50	100	3
3	21CS43	Analysis and Design of Algorithms	3	0	0	0	3	50	50	100	3
4	21CS44	Object Oriented Programming with JAVA	3	0	0	0	3	50	50	100	3
5	21KAK45	Kannada (Samskrutika)									
6	21KAN45	Kannada(Balake Kannada)	2	0	0	0	1.5	50	50	100	1
7	21CSAE46A	Organic Farming: Horticulture	2	0	0	0	2	50	50	100	2
8	21CSAE46B	MS Office Tools	0	0	2	0	3	50	50	100	1
9	21UHV46C	Universal Human Values-II	0	2	0	0	3	50	50	100	1
10	21CSL41	Analysis and Design of Algorithms Lab	0	0	2	0	3	50	50	100	1
11	21CSL42	Object Oriented Programming with JAVA Lab	0	0	2	0	3	50	50	100	1
12	21CSL43	Web Application Development Lab	0	0	2	0	3	50	50	100	1
		Total	18	0	08	0	28.5	550	550	1100	20

SCHEMEOFTEACHINGFORVSEMESTER-21 SERIES

				eachingI	Hours/V	Veek		E	Examinat	ion	
Sl. No	CourseCo de	CourseTitle	TheoryLe cture(L)	Tutorial(T)	Practical	Self Study(S)	Duration inhours	CIEMarks	SEEMarks	TotalMarks	Credits
1	21CS51	Software Engineering and Tools	3	0	0	0	3	50	50	100	3
2	21CS52	Computer Networks	3	0	2	0	3	50	50	100	4
3	21CS53	Operating System	3	0	0	0	3	50	50	100	3
4	21CS54	Database Management System	3	0	0	0	3	50	50	100	3
5	21CSL55	Database Management System Lab	0	0	2	0	3	50	50	100	1
6	21RMI56	Research Methodology & Intellectual PropertyRights	2	0	0	0	3	50	50	100	2
7	21CIV57	Environmental Studies	0	2	0	0	2	50	50	100	1
8	21CSAE581	Python Programming	0	0	2	0	3	50	50	100	1
		Total	14	2	6	0	23	400	400	800	18

S.No.	Course Code	Course Title
1	21CSAE581	Python Programming(Ability Enhancement Course)

SCHEMEOFTEACHINGFORVISEMESTER-21 SERIES

				achingl	Hours/	Week		E	Examinat	tion	
Sl. No	CourseC ode	CourseTitle	Theory Le cture(L)	Tutorial(T)	Practical	Self Study(S)	Duration inhours	CIEMarks	SEEMarks	TotalMarks	Credits
1	21HU61	Entrepreneurship, Management and Finance	3	0	0	0	3	50	50	100	3
2	21CS62	Computer Graphics and Fundamentals of Image Processing	3	0	2	0	3	50	50	100	4
3	21CS63	Artificial Intelligence and Machine Learning	3	0	0	0	3	50	50	100	3
4	21CS64x	Professional Elective -I	3	0	0	0	3	50	50	100	3
5	21CS65OEx	Open Elective-I	3	0	0	0	3	50	50	100	3
6	21CSL66	Artificial Intelligence and Machine Learning lab	0	0	2	0	3	50	50	100	1
7	21CSMP67	Mini Project	0	0	2	0	0	50	0	50	2
8	21INT68	Innovation/Entrepreneurship/Societal Internship (To be carried during intervening period of IV and V semester)	0	0	0	0	0	50		50	3
		Total	15	0	6	0	18	400	300	700	22

	Professional Elective-I
21CS641	System Software and Compiler Design
21CS642	Design of IoT System
21CS643	Cryptography and Information security

	Open Elective-I
21CS65OE1	Introduction to Artificial Intelligence

SCHEMEOFTEACHINGFORVIISEMESTER-21 SERIES (TENTATIVE)

			Т	eachingI	Hours/V	Week		E	xaminati	on	
Sl. No	CourseCo de	Course Title	TheoryL ecture(L)	Tutorial(T)	Practical	Self Stud y(S)	Duration inhour s	CIEMark s	SEEMark s	TotalMark S	Credits
1	21CS71	Cloud Computing	3	0	0	0	3	50	50	100	3
2	21CS72x	Professional Elective –II	3	0	0	0	3	50	50	100	3
3	21CS73x	Professional Elective –III	3	0	0	0	3	50	50	100	3
4	21CS74OEX	Open Elective –II	3	0	0	0	3	50	50	100	3
5	21CSP75	Project Work	0	0	2	0	3	50	50	100	10
6	21CS76	Ability Enhancement Course (Online- 8 weeks NPTEL)	0	0	0	0	3	50	50	100	2
		Total	12	0	2	0	18	300	300	600	24

	ProfessionalElective-II
21CS721	Web Application Security
21CS722	WirelessNetworks&Mobile Computing
21CS723	Data Mining and Warehousing

Pro	Professional Elective–III						
21CS731	21CS731 BlockchainTechnology						
21CS732	BigDataAnalytics						
21CS733 Parallel Computing							

OpenElective Course -II		
21CS74OE1	WebTechnologies	

SCHEMEOFTEACHINGFORVIIISEMESTER-21 SERIES (TENTATIVE)

			TeachingHours/Week		Examination						
Sl. No	CourseC ode	CourseTitle	TheoryLe cture(L)	$\operatorname{Tutorial}(\mathbf{T})$	Practical	Self Study(S)	Duration inhours	CIEMarks	SEEMarks	TotalMarks	Credits
1	21CS81	Technical Seminar 0 0 0		0	100	0	100	1			
2	21INT82	Research/ Industry Internship 0 0 0		3	100	100	200	15			
3	21NS39	NSS (National Service Scheme)	Completed during the intervening								
4	21PE39	PE (Physical Education)			100	0					
5	21YO39	Yoga	semester to VIII semester								
		Total			3	250	150	400	16		

AUTONOMOUS SYLLABUS FOR B.E III SEMESTER

Course Title: COMPUTATIONAL METHODS FOR COMPUTER SCIENCE			
Subject Code: 21CS31	Credit: 03	CIE: 50	
Number of Lecture Hours/Week	3 (L)	SEE: 50	
Total Number of Lecture Hours	28	SEE Hours: 03	

Prerequisites: Students should have knowledge of Differential calculus, Integral calculus and Differential equations.

Course Objectives: To enable the students to obtain the knowledge of Engineering Mathematics in the following topics

- Interpolation methods, Numerical differentiation and Numerical integration
- Fourier Series and Z-transformation and its application in engineering fields
- Methods of least squares to fit straight line and second degree parabola
- Solve the problems using probability theory

MODULES	Teaching Hours
Module I	
Finite differences: (Forward and Backward differences), Interpolation, Newton's Forward and Backward formulae. Lagrange's interpolation and inverse interpolation formulae. Numerical differentiation: Numerical differentiation using Newton's forward and backward interpolation formulae and problems.	
Numerical integration: Trapezoidal rule, Simpsons 1/3 rd and 3/8 th rule, Weddle"s rule (all formulae and rules without proof)	6 hours
Module II	
Difference equations and Z-Transforms: Difference equations —Basic definitions, Z-Transform-Definitions, standard Z-transform, linearity property, damping rule, shifting rule, initial value theorem, final value theorem. Inverse Z-Transform and problems.	6 hours
Module III	
Fourier series: Periodic functions, Fourier series with periods $(0, 2\pi)$, $(-\pi, \pi)$, $(0, 2l)$ and $(-l, l)$. Half range Fourier series, Practical harmonic analysis and problems.	6 hours
Module IV	
Optimization techniques: Linear Programming, Mathematical formulation of linear programming problem(LPP), Types of solutions, Graphical Method, basic feasible solution, canonical and standard forms and simplex method.	5 hours
Module V	
Time Series and Forecasting: Moving averages, smoothening of curves,	

forecasting models and methods, Statistical Quality Controls methods.

5 hours

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module. The students will have to answer 5 full questions, selecting one full question from each module.

TEXT BOOKS:

- 1. Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th Edition.2007
- 2. Engineering Mathematics by N. P. Bali and Manish Goyal. Laxmi publications, latest edition
- 3. Integral Transforms in Science and Engineering- by Kurt Bernado Wolf-springer Publications.

REFERENCES BOOKS:

- 1. Advanced Engineering Mathematics by E. Kreyszig, John Willey & sons 8th Edn.
- 2. A short course in differential equations Rainvile E.D.9th Edition.
- 3. Advanced Engineering Mathematics by R.K.Jain & S.R.K Iyengar; Narosa publishing House.
- 4.Introductory methods of numerical analysis by S.S.Sastry

Course outcomes:

On completion of the course, the student will have the ability to.				
Course	CO#	Course Outcome (CO)		
Code				
	CO1	Compute derivatives of the functions numerically using given data Computation of interpolation polynomials and numerical integration.		
	CO2	Analyze discrete type system using convolution and the Z-transform.		
21CS31	CO3	Construction of Fourier series for periodic signals and Fourier series to analyze circuits.		
	CO4	Apply optimization techniques for real life problems		
	CO5	Apply Statistical control methods and apply LPP for real-life problems in agriculture, medicine etc.		

Course Title: MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE					
Subject Code: 21CS32	Credit: 03	CIE: 50			
Number of Lecture Hours/Week	03	SEE: 50			
Total Number of Lecture Hours	42	SEE Hours: 03			

Prerequisites: Engineering Mathematics

Course Objectives:

To develop mathematical thinking and problem-solving skills associated with writing proofs.

To expose students to a wide variety of mathematical concepts those are used in the Computer Science discipline.

MODULES MODULES	Teaching Hours
Mathematical logic: Basic Connectives and truth tables, Logic Equivalence- The Laws of logic, Logical Implications-Rules of Inference. Counting: Permutations, combination, Pigeonhole, Principles. Relations and Digraphs: Product Sets and Partitions, Relation and Digraphs, Properties of Relations and Digraphs Properties of Relations, Equivalence Relations, Data structures for Relations and Digraphs, Operations on Relations, Transitive Closure and Warshall"s Algorithm. Module II	09 hrs
Function: Function, Function for Computer Science, Growth of functions, Permutation Functions Order Relations and Structure: Partially Ordered Sets, External Elements of Partially, Ordered Sets, Lattices, Finite Boolean Algebras, Functions on Boolean Algebras, Circuit.	08 hrs
Module III Introduction to Graph Theory-I: Definition & Examples, Sub-graph, complements and graph Isomorphism, Vertex degree, Euler trails and circuits. Graph Theory-II: Planar graphs, Hamilton paths and cycles, Graph coloring, chromatic polynomials, Transport networks. (Problem solving using C)	08 hrs
Module IV Trees: Definitions, Properties, and Examples Rooted Trees, pre order traversals and post order traversals, Trees and Sorting, Weighted Trees and Prefix Codes, minimal spanning tree. Languages and finite state machines: Languages, representations of special grammars and languages, finite state machine, semi groups machines and Languages	08 hrs
Module V Algebraic structures: Semigroups, monoids, definition, example and elementary properties, Homomorphism, isomorphism and cyclic groups, cosets and lagranges theorem, elements of coding theory, the hamming matric, parity check and	09 hrs

generator matrices, **Groups coding:** coding with coset headers and hamming matrices. Decoding in cosets: the cycle index, polys method of enumeration.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

TEXT BOOKS:

- 1. Grimaldi R. P., "Discrete and Combinatorial Mathematics", 6th edition, Pearson Education 2004.
- 2.B.Kolman and R.C.Busby and Ross, "Discrete Mathematical Structures for Computer Science", 5th edition, PHI, 2000 New Delhi, 1994.

REFERENCES:

- 1. Frank Harary, "Graph Theory", Addison Wesley Publishing Company, 1995.
- 2. C. L. Liu C. L., "Elements of Discrete Mathematics", 2nd edition, McGraw Hill, Singapore, 1985.
- 3. J.P. Tremblay, "Discrete Mathematical Structures with Applications to Computer Science", McGraw Hill, N.Y., 1977
- 4. Kenneth H Rosen, "Discrete Mathematics and its applications", 6th Edition, McGraw Hill2007.

Course outcomes:

Course Code	CO#	Course Outcome (CO)
	CO1	Acquire knowledge of mathematical logic, proofs of basic discrete probability, number theory and apply in problem solving
	CO2	Apply various concept of functions and relations for solving computing problems
21CS32	CO3	Demonstrate knowledge of fundamental concept in graphs
	CO4	Illustrate problems on trees and understand its properties and Design grammars, finite state machines.
	CO5	Demonstrate knowledge of algebraic structures and their applications in coding theory and group coding

Course Title: DATA STRUCTURES					
Subject Code: 21CS33	Credits :3	CIE: 50			
Number of Lecture Hours/Week	3 Hrs	SEE: 50			
Total Number of Lecture Hours	52	SEE Hours: 03			

Prerequisites: C language fundamentals and programming skill, Basic knowledge of algorithm development, Knowledge of linear and Non-linear data types

Course Objectives:

- To understand the behavior of data structures such as stacks, queues, trees, hashtables, search trees and their representations.
- To choose the appropriate data structure for a specified application.
- To analyze various searching and sorting algorithms.

MODULES	Teaching Hours
Module - I	J
Structures and Unions: Structure definition, giving value to members, Structure initialization, Comparison of structure variables, Arrays of structures, Arrays within structures, Structure within structures, Structure and functions, Unions, Size of structures, Bit-fields. Pointers: Understanding pointers, and the address of operator, Declaring and initializing pointer, Accessing a variable through it's pointer, Pointer and arrays, Pointer and character strings, Pointer and functions, Pointer and Structures. Dynamic memory allocation: Meaning of dynamic memory allocation, MALLOC, CALLOC, Free and REALLOC functions, Pointer revisited. File management: Definition and opening a file, closing a file, I/O operations on files, Error handling during file operation, Radom access to files, Command line arguments	08 Hrs
Module - II Definition and Representing Stack in C: Primitive operation, Example. Implementing the pop() operation, Testing for exceptional conditions, Implementing the push() operation, Example: Infix, Postfix and Prefix, Basic definitions and Examples, Evaluating a postfix expression, Program to evaluate postfix expression, Converting an expression from infix to postfix, Program to convert expression from infix to postfix. Recursive definition and processes: Factorial function, Multiplication of natural numbers, Fibonacci sequence, Binary search, Properties of recursive definition or algorithm Recursion in C: Factorial of a number Generation of Fibonacci numbers, Binary searching, Towers of Hanoi problem.	08 Hrs
Module – III The queue and it's sequential representation: C implementation of queues, Insert operation, Priority queues, Array implementation of priority Linked lists: Inserting and removing nodes from a list. Linked implementation of stacks, Get node and Free node operations, Linked list implementation of queues, Linked list as a data structure, Example of list operations, Header nodes. Array implementation of list, Linked implementation of lists. Limitations of array implementation, Allocating and freeing dynamic variables, Linked list using dynamic variable, Queues as lists in C, Example of list operations in C, Non- integer and non-homogeneous lists.	08 Hrs

Module - IV		
Other list structures: Circular lists, Stack as circular list, Queues as a circular list,		
Primitive operations on circular list, doubly linked list.		
Binary trees: Operations on binary trees and applications of binary trees Binary		
tree representation: Node representation of binary tree, Internal and external nodes,	00 11	
Implicit array representation of binary trees, Choosing a binary tree representation,	09 Hrs	
Binary tree traversals in C, Threaded Binary trees.		
Trees and their applications: C representation of trees, Tree traversals, General		
expression as trees, Evaluating an expression tree, Constructing a tree.		
Module - V		
Sorting & Searching: Binary tree sort, Simple insertion sort, Address calculation		
sort, Radix sort. Sequential searching, Searching an ordered table, Indexed 09 Hrs		
sequential search, Interpolation search. Tree searching: Inserting into a binary		
search tree, Deleting from a binary search tree.		
Hashing: Resolving hash clashed by open addressing, Choosing a hash function.		

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text book:

- 1. E. Balgurusamy, "*Programming in ANSI C*", 7 th Edition, Tata McGraw-Hill Publication, 2017.
- 2 Yedidyah Langsam, Moshe J. Augenstein and Aaron M. Tannenbaum, "*Data Structures Using C and C++*", 2nd Edition, Prentice-Hall of India publication, 2005.

Reference Books:

- 1. Debasis Samanta, "Classic Data Structures", 2nd Edition, PHI, 2009.
- 2. Richard F. Gilberg and Behrouz A. Forouzan:, "Data Structures APseudocode Approachwith C", Cengage Learning, 2005.
- 3. Robert Kruse & Bruce Leung, "Data Structures & ProgramDesign in C", Pearson Education, 2007.
- 4. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 2007.

Course outcomes:

Course	CO#	Course Outcome (CO)
Code		
	CO1	Apply the fundamental knowledge of pointers, dynamic memory allocation and recursion for designing data structures.
21.0922	CO2	Demonstrate the usage of stack, queue data structure for design ofapplications.
21CS33	CO3	Illustrate basic operations on linked lists and construct various data structures using linked lists.
	CO4	Design Binary trees and binary search trees using tree data structure.
	CO5	Compare, analyze and implement different sorting and searching Techniques.

Course Title: MICROPROCESSOR AND MICROCONTROLLER			
SubjectCode:21CS34	Credit:3	CIE:50	
Number of Lecture Hours/Week	03 Hrs	SEE:50	
Total Number of Lecture Hours	42	SEEHours:03	

Pre-requisites: Logic Design, Basic Electronics

Course Objectives:

- Explore the microprocessor architecture and its instruction set.
- Develop skills for programming in Assembly language.
- Interface Peripheral devices with 8086 Microprocessor and ARM Processor

• Interface Peripheral devices with 8086 Microprocessor and ARM Process	or
Modules	Teaching Hours
Module-I The 8086/8088 Processors: Architecture of 8086 microprocessor, Signal Descriptions of 8086, Physical Memory Organization, Minimum and Maximum Mode 8086 System and Timings, The Processor 8088. 8086/8088 Instruction Set Assembler Directives: Machine Language Instruction Formats, Addressing Modes of 8086, Instruction Set of 8086/8088, Machine language Conversion, Assembler Directives and Operation.	08 Hrs
Module-II Assembly Language Programming with 8086/8088: A Few Machine Level Programs, Machine Coding The Programs, Programming with an Assembler, Assembly Language Example Programs. Special Architectural Features and Related Programming: Introduction to stack, stack structure of 8086/88, interrupts and interrupt service routines, Interrupt cycle of 8086/88, Non maskable interrupt, Maskable interrupt, Interrupt programming, passing parameter to procedures, MACROs, Timings and Delays.	08 Hrs
Module-III Special Architectural Features and Related Programming Cont: passing parameter to procedures, MACROs, Timings and Delays. Basic Peripherals and their Interfacing with 8086/88: Semiconductor Memory interfacing, Dynamic RAM interfacing, Interfacing I/O ports, P/O 8255, Modes of operations of 8255. Interfacing Analog to digital Converter, Interfacing Digital to Analog Converter, Stepper Motor interfacing	0 2
Module-IV Microcontrollers - Types of Microcontrollers - Criteria for selecting a microcontroller - Example Applications. Characteristics and Resources of a microcontroller. Organization and design of these resources in a typical microcontroller - 8051. 8051 Architecture, Register Organization, Memory and I/O addressing, Interrupts and Stack.	08 hrs

Module-V	09 hrs
8051 Addressing Modes, Different types of instructions and Instruction Set, Simple	
programs. Peripheral Chips for timing control -	
8254/8253. ARMProcessorFundamentals : Registers, Current Program Status	
Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core	
Extensions, Introduction to the ARM Instruction Set: Data Processing	
Instructions, Branch Instructions, Software Interrupt Instructions, Program Status	
RegisterInstructions,CoprocessorInstructions,LoadingConstants,Simpleprogramm	
ingexercises.	

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. Bhurchandi and Ray, Advanced Microprocessors and Peripherals, Third Edition McGraw Hill, 2012
- 2. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, Pearson Education, 2011.

ReferenceBooks:

- $1.\ Barry\ B.\ Brey,\ The\ Intel\ Microprocessors-Architecture,\ Programming\ and\ Interfacing,\ Eigth\ Edition,\ Pearson\ Education,\ 2015$
- 2. A. NagoorKani, Microprocessors and Microcontrollers, Second Edition, Tata McGraw Hill, 2012.

Course outcomes:

Course Outcome	CO#	Course Outcome(CO)	
CO1 Analyze the 8086 processor Structure, Assembly I Programming and System programs used in Assembly programming. Acquire knowledge on basic structure of compare performance			
21CS34	CO2	Develop assembly language code to solve problems	
	CO3	Design hardware interfacing of memory devices to x86family	
	CO4	Compare Microprocessor and Microcontroller, Explain interfacing through ARM processor, interrupt routines	
	CO5	Demonstrate Instruction set and develop programs using ARM processor	

Course Title: DATA STRUCTURES LAB			
Subject Code: 21CSL35	Credits: 1	CIE: 50	
Number of Practical Hours/Week	2 Hrs	SEE: 50	
		SEE Hours: 03	

Prerequisite: C Language: Functions and Pointers

Course Objectives:

- 1. To study the working of data structures such as stacks, queues, trees, hash tables, search trees.
- 2. To choose the appropriate data structure for a specified application.
- 3. To learn various searching and sorting algorithms.
- 1. Design, Develop and Implement a menu driven Program in C for the following Array operations
- a. Creating an Array of N Integer Elements
- b. Display of Array Elements with Suitable Headings
- c. Inserting an Element (ELEM) at a given valid Position (POS)
- d. Deleting an Element at a given valid Position(POS)
- e. Exit.

Support the program with functions for each of the above operation.

- 2. Design, Develop and Implement a program in C for the following operations on Strings
 - a Read a Main String (STR), a Pattern String (PAT) and a Replace String (REP).
 - b. Perform Pattern Matching Operation: Find and Replace all occurrences of PAT in STR with REP if PAT exists in STR. Repost suitable messages in case PAT does not exist in STR.

Support the program with functions for each of the above operations. Don't use built-in functions.

- 3. Design, Develop and Implement a menu driven Program in C for the following operations on STACK of Integers (Array Implementation of Stack with maximum size MAX)
 - a Push an Element on to Stack
 - b. Pop an Element from Stack
 - c. Display the status of Stack
 - d Demonstrate Overflow and Underflow situations on Stack
 - e. Exit

Support the program with appropriate functions for each of the above operations.

4. Design, Develop and Implement a Program in C for converting an Infix Expression to Postfix Expression. Program should support forboth parenthesized and free parenthesized expressions with the operators: +, -, *, /, %(Remainder), ^ (Power) and alphanumeric operands.

- 5. Design, Develop and Implement a Program in C for the following Stack Applications
 - a. Evaluation of Suffix expression with single digit operands and operators: +, -, *, /, %, ^
 - b. Solving Tower of Hanoi problem with ndisks
- 6. Design, Develop and Implement a menu driven Program in C for the following operations on QUEUE of Characters (Array Implementation of Queue with maximum size MAX)
 - a. Insert an Element on to QUEUE
 - b. Delete an Element from QUEUE
 - c. Demonstrate Overflow and Underflow situations on QUEUE
 - d. Display the status of QUEUE
 - e. Exit

Support the program with appropriate functions for each of the above operations.

- 7. Design, Develop and Implement a menu driven Program in C for the following operations on Singly Linked List (SLL) of integervalues
 - a. Create a SLL of N integers byusing front insertion.
 - b. Display the status of SLL and count the number of nodes in it
 - c. Perform Insertion and Deletion at End of SLL
 - d. Perform Insertion and Deletion at Front of SLL
 - 8. Design, Develop and Implement Program in C to Reverse a Singly Linked List (SSL) of a given integers.
 - 9. Design, Develop and Implement a menu driven Program in C forthe following operations on Priority Queue.
 - a. Create a Priority queue by using Insert function.
 - b. Insertion data and Priority values as Input.
 - c. Perform Deletion operation.
 - d. Display the elements of Priorityqueue.
 - 10. Design, Develop and Implement a Program in C for the following operations on Binary Search Tree(BST) of Integers
 - a. Create a BST of N integers: 6,9,5,2,8,15,24,14,7,8,5,2.
 - b. Traverse the BST in Inorder
 - c. Traverse the BST in Preorder
 - d. Traverse the BST in Postorder

11. Given a File of N employee records with a set K of Keys(4- digit) which uniquely determine the records in file F. Assume that file F is maintained in memory by a Hash Table(HT) of m memory locations with L as the set of memory addresses (2- digit) of locations in HT. Let the keys in K and Addresses in L are Integers. Design and develop a Program in C that uses Hash function H: K ®L as H(K)=K mod m (remainder method), and implement hashing technique to map a given key K to the address space L. Resolve the collision (if any) using linear probing.

Course outcomes:

Course	CO#	Course Outcome (CO)		
Code				
	CO1	Design and develop various data structure using pointers, dynamic memory allocation and recursion		
	CO2 Demonstrate basic operations on linked list using suitable data structures.			
21CSL35	CO3	Illustrate the implementation of different sorting and searching techniques.		
	CO4	Construct Binary trees and binary search trees		
	CO5	Write a well organized laboratory report presenting the results in a clear way using algorithms and obtained output.		

Course	THE MICHOPPOCESSOR	S AND MICROCONTROLLERS LAB		
	et Code: 21CSL36	Credits:1	CIE:50	
	er of Practical Hours/Week	2 Hrs	SEE:50	
			SEEHours:03	
	quisite: C Programming			
Cours		ocessorarchitectureandinstructionset		
		Programs		
	WAREPROGRAMS:PARTA Design an ALP to separate even	n and odd numbers from an array.		
2.	Design an ALP to find Factoria	l of a given 8-bit number.		
3.	Design an ALP to convert 8 bit	binary number to its BCD equivalent		
4.	Design an ALP to generate first	t 'n' Fibonacci series.		
5.	Design an ALP to count the num	mber of 0's and 1's in a given number.		
6.	Design an ALP to create a file a	and delete an existing file.		
7.	Design an ALP to display the li	st of alphabets on the screen.		
8.	Design and develop an assemble	y language program to search a key		
	element "X" in a list of "n" 16-bit numbers. Adopt Linear search			
	algorithm in your program for s	searching.		
9.	9. Design and develop an assembly program to sort a given set of "n" 16-			
	bitnumbersinascendingorder.AdoptBubbleSortalgorithmtosortgiveneleme			
	nts.			
10	• • •	program to reverse a given string and e or not. Display the appropriate message.		
		nguage program to compute nCr using at "n" and "r" are non-negative integers.		
	current time and Date from the format on the screen.	assembly language program to read the system and display it in the standard		
HA	RDWAREPROGRAMS:PAR	ГВ		
	Using ARM TTDMI/LPC2148.	programtointerface4*4matrixkeyboard. y program to implement the buzzer		

- 15. Design and develop an assembly program to drive a Stepper Motor interface and rotate the motor in specified direction (clockwise or counterclockwise) by N steps (Direction and N are specified by the examiner). Introduce suitable delay between successive steps. (Any arbitrary value for the delay may be assumed by the student) using ARM TTDMI/LPC2148.
- 16. Design and develop an assembly language program to
 - a. GeneratetheSineWaveusingDACinterface(TheoutputoftheDA Cistobedisplayed on the CRO).
 - b. Generate a Half Rectified Sine wave form using the DAC interface.) using ARMTTDMI/LPC2148.
- 17. To interface LCD with ARM processor ARM7TDMI/LPC2148. Write and execute programs in C language for displaying text messages and numbers on LCD.

Study Experiments:

- 1. InterfacingoftemperaturesensorwithARMfreedomboard(oranyotherARM microprocessor board)and display temperature on LCD
- 2 To design ARM cortex based automatic number plate recognition system
- 3. To design ARM based power saving system

Question paper pattern:

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- The board layout and the circuit diagram of the interface are to be provided to the student during the examination.
- Software Required: Open source ARM Development platform, KEILIDE and Proteus for simulation

Course outcomes:

Course	CO#	Course Outcome(CO)
Code		
	CO1	Develop ALP for searching and sorting using 8086 microprocessor.
	CO2	Design and develop assembly programs using 8086 DOS functions, subroutines
21CSL36		and micros in assembly language
2105250	CO3	Design and interface of different peripherals with ARM microcontroller.
	CO4	Develop ARM interfacing software for motor and LCD display
	CO5	Construct different wave forms using interfacing 08086 microprocessor

Course Title: LOGIC DESIGN LAB			
Subject Code: 21CSL37	Credits: 1	CIE: 50	
Number of Practical Hours/Week	2 Hrs	SEE: 50	
		SEE Hours: 03	

Prerequisite: Knowledge of Basic Electronics and Boolean algebra.

Course Objectives:

- To illustrate the students different electronic circuit and their application in practice.
- To impart knowledge on assessing performance of electronic circuit through monitoring ofsensitive parameters.
- To evaluate the use of computer-based analysis tools to review performance of semiconductor device circuit

Laboratory Experiments:

- 1. Design and construct a Schmitt trigger using Op-Amp for given UTP and LTP values and demonstrate its working.
- 2. Design and construct a rectangular waveform generator (Op-Amp relaxation oscillator) for given frequency and demonstrate its working.
- 3. Design and implement an Astable multivibrator circuit using 555 timerfor a given frequency and duty cycle.
- 4. Design and implement Half adder, Full Adder, Half Subtractor, Full Subtractor using basic gates.
- Given a 4-variable logic expression, simplify it using Entered Variable Map and realize the simplified logic expression using 8:1 multiplexer IC.
- 6. Design and implement code converter I)Binary to Gray (II) Gray to Binary Code using basic gates.
- 7. Design and verify the Truth Table of 3-bit Parity Generator and 4-bit Parity Checker using basic Logic Gates with an even parity bit.
- 8. Realize a D,T,JK Flip-Flop using NAND gates and verify its truthtable.
- 9. Design and implement a mod-n (n<8) synchronous up counter using JK Flip Flop ICs and Demonstrate its working
- 10. Design and implement an Asynchronous counter using decade counter IC to count from 0 to n(n<=9) and demonstrate on seven segment display(using IC 7447)
- 11. Generate a Ramp output waveform using DAC0800 (Inputs are given to DAC through IC74393 dual 4-bit binary counter).
- 12. To study 4-bitALU using IC-74181.

Question paper pattern:
Note: Conduction of Practical Examination: All laboratory experiments (1 to 11 nos) are to be included for practical examination.

Course outcomes:

Course Code	CO #	Course Outcome (CO)
	CO1	Use of various devices like CRO, function generator, multimeter, bread board, Make us of electronic components, ICs, instruments and tools for design and testing of circuits for given inputs.
	CO2	Evaluate and design the combinational circuit.
21CSL37	CO3	Evaluate and design registers and counters using flip-flops.
	CO4	Design and develop D/A convertors.
	CO5	Analyze the working and implementation of ALU.

Course Title: HTML and CSS (Ability	Enhancement Course)	
Subject Code :21CSL39A	Credit :1	CIE: 50
Number of Practical Hours/Week	2Hrs	SEE: 50
		SEE Hours: 03
1. HTML-Introduction, Coding syntax, D Create a basic HTML document, inserting example: Welcome to my website) in betw	a sentence / multiple sentences (For	
2. HTML – Basic Formatting Tags: Parag Rules.	raphs, Line Breaks, Headings, Horizontal	
Create a HTML document with paragraph line breaks. Insert a horizontal rule betwe		
3. Simple Text Effects and Lists: font far Underline, Struck through, Bold, Italic, On Lists.		
Create a HTML document with three difference a minimum of 3 entries in each one.	erent lists with text effects. There should	
4. Image Effects: Image formats, Inserting Alignment, Borders and Spacing Create a html document and insert image text to the image, also insert some text after border around the image (size of your cho (size of your choice).		
5. File Management: Linking Text, Linkin Create a HTML document to create a Hon College, Departments and Subjects. Creat	ne page having three links: About	
6.T ables: Basics, Table border, Table hea spanning, Create a HTML document to document.		
7. HTML forms : <form>, <input/>, <texta a="" a<="" create="" document="" html="" shows="" td="" which=""><td></td><td></td></texta></form>		
8. HTML frames : <frame/> , <frameset>, < Create a HTML document to create a fram content sections.</frameset>		
9. Introduction to CSS: Introduction, applyand background properties. Create a HTML document which creates a CSS.		
10. Website designing (Assignment / OEE	E).	

Course Title: APPLIED STATISTICS			
Subject Code: 21MA41D	Credit: 03	CIE: 50	
Number of Lecture Hours/Week	3Hrs (L)	SEE: 50	
Total Number of Lecture Hours	28	SEE Hours: 03	

Prerequisites: Basic knowledge of Statistic and Probability

Course Objectives: To enable the students to obtain the knowledge of Engineering Mathematics in the following topics

- 1. Probability distribution of discrete and continuous random variables
- 2. Joint probability distributions and discrete and continuous random variables and Morkov's chains
- 3. Analyse the sample data using Large sample test, t-distribution and chi- distribution

3. Analyse the sample data using Large sample test, t-distribution and chi- dis	illoution
MODULES	Teaching Hours
Module I	
Probability distributions: Random variable (Discrete and continuous) p.d.f., c.d.f., Binomial distribution, Poisson distributions, Normal distribution and problems	6 hours
Module II	
Joint probability distributions: Concept of joint probability distribution, discrete and continuous random variables independent random variables .problems on expectation and variance	6 hours
Module III	
Markov chains: Introduction probability vectors stochastic matrices, higher transition probability. Stationary distribution of regular Markov chains and absorbing states	5 hours
Module IV	
Sampling theory: Sampling, sampling distribution, standard error. Testing of hypothesis for means. Confidence limits for means. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations. Test of significance Small samples student"s t-distribution: Test for single mean, difference of means, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes. And problems.	6 hours
Module V	
Distances in Classification: Introduction, Euclidean Distance, Manhattan Distance, Euclidean vs Manhattan Distance, Chebyshev Distance, Hamming Distance, Distance calculation in Clusters	5 hours

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

TEXT BOOKS:

- 1 Higher Engineering Mathematics by B.S.Grewal, 36th Edn.
- 2 Engineering Mathematics by N. P. Bali and Manish Goyal. Laxmi publications, latest edition.
- 3 Higher Engineering Mathematics by H. K. Dass and Er. Rajnish Verma. S. Chand publishing 1st edition -2011

REFERENCES:

- 1. Advanced Engineering Mathematics by E. Kreyszig, John Willey & sons 8^{th} Edn.
- 2. Advanced Engineering Mathematics by R.K.Jain & S.R.K Iyengar; Narosa publishing House.
- 3. Introductory methods of numerical analysis

Course outcomes:

Course Code	CO#	Course Outcome (CO)
	CO1	Solve problems using theoretical probability distributions
	CO2	Apply the concepts of joint probability, to find covariance, correlation, independent variables
21MA41D	CO3	Apply stochastic to find the probability vectors, stochastic matrices and higher transition probability
	CO4	Analyse the sample data using Large sample tests
	CO5	Analyse the sample data using t-distribution and chi- distribution.

Course Title: FINITE AUTOMATA AN		T	
Subject Code :21CS42	Credit: 3	CIE: 50	
Number of Lecture Hours/Week	03 Hrs (L)	SEE: 50	
Total Number of Lecture Hours	42	SEE Hours: 03	
Pre-requisites: Mathematical Foundation	ns of Computer Science		
Course objectives:			
To gain an understanding of autoFamiliarize applications of auton	mata theory principles nata theory in compiler construction a	and text	processing.
Modules	J 1		Teaching Hours
Module-I			
Introduction to finite automata: Intr	•		
concepts of Automata theory; Determ			
finite automata, An application of finite transitions.	e automata, Finite automata with Ep	silon-	09 Hrs
Module-II			_
Regular expressions, Regular langua	ges and Properties: Regular expres	sions.	
Finite Automata and Regular Expression			
Regular languages and properties: Re			
be regular languages, Closure properties	s of regular languages.		08 Hrs
Module-III			
Properties of regular languages cont			
properties of regular languages, Equiv	valence and minimization of auto	omata.	
Context-free grammars and language		trees;	08 Hrs
Applications; Ambiguity in grammars and	ı Languages. ule-IV		
MIOG	uie-1 v		
Pushdown automata: Definition of the	Pushdown automata; The language	s of a	
PDA; Equivalence of PDA's and CFO	G's; Deterministic Pushdown Auto	omata.	09 hrs
Properties of context-free languages: Nor	mal forms for CFGs; The pumping 1	emma	
for CFGs; Closure properties of CFL.			
Modu	ıle-V		
Introduction to Turing machine: Proble	<u>-</u>		
turning machine; Programming techniqu	<u> </u>	nsto	
the basic Turning Machines; Turing Macl	-		08Hrs
Undecideability: A Language that is not	•		
problem that is RE; Post's Correspondence	e problem; Other undecidable proble	ems.	

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text books:

1. Introduction to Automata Theory, Languages and Computation – John E. Hopcroft, RajeevMotwani, Jeffrey D.Ullman:, 3rd Edition, Pearson education, 2007.

Reference Books:

- 1. Raymond Greenlaw, H.JamesHoove, Morgan Kaufmann, Fundamentals of the Theory of Computation: Principles and Practice –, 1998.
- 2. John C Martin, Introduction to Languages and Automata Theory -3^{rd} Edition, Tata McGraw-Hill, 2007.
- 3. Daniel I.A. Cohen, Introduction to Computer Theory -2^{nd} Edition, John Wiley & Sons, 2004.
- 4. Thomas A. Sudkamp, An Introduction to the Theory of Computer Science, Languages and Machines –3rdEdition, Pearson Education, 2006.

Course outcomes:

Course	CO#	Course Outcome (CO)		
Code				
	Design Deterministic and non Deterministic finite automata for a givenlanguage and identify related applications in text processing.			
21.0942	CO2	Construct Regular expressions for given language and describe properties of regular language.		
21CS42	CO3	Develop Context Free Grammar and illustrate with its applications		
	CO4	Design PDA, discuss equivalence of CFG and PDA and explain properties of Context Free Languages.		
	CO5	Illustrate Turing machine concepts and its variants and the notion of undecidability.		

Subject Code: 21CS43	Credit: 3	CIE: 50
Number of Lecture Hours/Week	03 Hrs (L)	SEE: 50
Total Number of Lecture Hours	42	SEE Hours: 03
Pre-requisites: Data structures using	C.	
 Course objectives: Analyze the asymptotic performance Introduce various algorithm de 	rmance of the algorithms in time and space esign techniques.	domain.
Me	odules	Teaching Hours
Algorithm, Fundamentals of Algorith Types, Fundamental of Data Struct Algorithm Efficiency; Analysis Fra	odule-I amic Problem Solving, Important problem tures, Fundamentals of the Analysis of mework, Asymptotic Notations, Basic and Recursive Algorithms, Examples-	08 Hrs
Brute Force: Introduction, Selection & Brute-Force String Matching Exhaust Divide & Conquer: Introduction, M. Binary tree traversals & related proper	ive Search lerge Sort, Quick Sort, Binary Search, ties, Multiplication of large integers &	09 Hrs
Stressen's Matrix Multiplication Inser		
Decrease & Conquer: Introduction, Topological Sorting, Algorithms for C Transform & Conquer: Introductio Trees, Heaps and Heap Sort, Problem Sorting by Counting, Input Enhancem	n , Presorting, Balanced Search Trees, 2-3 n Reduction, Space & Time Tradeoffs: ent in String matching , Hashing.	09 Hrs
	dule-IV on, Computing a Binomial Coefficient,	
•	thm, The Knapsack Problem and Memory	08 Hrs

Limitations of Algorithms Power: Introduction, Lower- Bound Arguments,

Backtracking: Introduction, n-Queen's problem, Hamiltonian circuit problem,

Subset problem, General backtracking algorithm, Branch- and-Bound: The

assignment problem, Knapsack problem, Travelling sales man problem.

Decision Trees, P, NP, and NP – Complete Problems.

08 Hrs

Curriculum For IV Semester 2022 - 2023

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text books:

1. Anany Levitin, "Introduction to the Design & Analysis of Algorithm ", 2nd Edition, Pearson Edition, 2007.

Reference Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, "Introduction Algorithm", 2nd Edition, PHI,2006.
- 2 Horowitz E, Sahni S., Rajasekaran S., "Computer Algorithms", Galgotia Publications, 2001.

Course outcomes:

Course	CO#	Course Outcome (CO)	
Code			
	CO1	Study the fundamental ideas used for designing and analyzing algorithms.	
	CO2	Demonstrate Brute Force, Divide-and-Conquer techniques and analyze the performance of algorithms.	
21CS43	CO3	Demonstrate design of Decrease & Conquer and Transform & Conquer algorithms and their efficiencies.	
	CO4	Apply Dynamic Programming and Greedy Techniques to solve various graph problems efficiently.	
	CO5	Describe Limitations of algorithms power and illustrate Back tracking, Branch-and-Bound algorithms to solve recursive and computational problems.	

Course Title: JAVA PROGRAMMING	G	
Subject Code: 21CS44	Credit: 03	CIE: 50
Number of Lecture Hours/Week 04 Hrs		SEE: 50
Total Number of Lecture Hours	42	SEE Hours: 03
Prerequisites: Concepts of Object orien	ited programming	
Course Objectives: Learn the Java Prog packages, creating GUI with applets, and		and import
MODU		Teaching Hours
The Java Language -The History and E Data Types, Variables, and Arrays ,Operat program Stringhandling- string constructors string concat(), replace(), trim(), StringBuffer	volution of Java, An Overview of Java, cors, Control Statements, A first simple	11 Hrs
Introducing Classes, Objects, and Me Objects, Assigning object Reference Varia Collection and Finalize method, The this Key A Closer Look at Methods and Classification objects as parameters, Argument passin Understanding Static, Introducing Final Command line arguments	ethods-Class Fundamentals, Declaring ables, Methods, Constructors, Garbage word asses – Overloading methods, Using ag, Returning objects, Access control,	10 Hrs
Modu Inheritance: Inheritance Basics, Using s When are Constructors are called, , class, Using Final with inheritance, The C Interfaces: Defining an interface, imple applying interfaces, variables in interfaces Packages: Packages, Access Protection ,	uper, Creating a Multilevel Hierarchy, Method Overriding, Using Abstact Object Class,. menting interfaces,nested interfaces, s, Interfaces can be extended,	10 Hrs
Modu Exception Handling: Exception Hand Uncaught Exceptions, Using try and c statements,throw,throws,finally,java's exception subclasses Multithreaded Programming The java Thread,Creating a Thread,Creating Multip priorities,Syncronization, Thread Communotify All(), suspending, Resuming and st	dling Fundamentals, Exception Types, atch, Multiple catch clauses, Nested try built in exceptions, creating own Thread Module, The Main ble threads, thread nication using notify (), wait() and	10 Hrs

Curriculum For IV Semester 2022 - 2023

Module V

Applets: Applet basics, A complete Applet Skeleton, Applet Initialization and Termination, A key Aspect of an Applet Architecture, Requesting Repainting, using the status window, Passing parameters to Applets.

11 Hrs

JDBC-ODBC Connectivity: JDBC program, using prepared Statement Object, Interactive SQL tool.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Java Fundamentals: A comprehensive Introduction by Herbert Schildt, Dale Skrien. Tata McGraw Hill Edition 2013.
- 2. Herbert Schildt, The Complete Reference, JAVA 7th/9th Edition, Tata McGraw Hill, 2013.
- 3. Java 6 Programming Black Book, Dreamtech Press. 2012

Reference Books:

- 1. Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education, 2004.
- 2. Uttam K Roy, Advanced JAVA programming, Oxford University press, 2015.

2. Ottain K Roy, Advanced JAVA programming, Oxford University press, 2013.		
Course	CO#	Course Outcome (CO)
Code		
	CO1	Apply the concepts of programming and implement programs using Java Constructs.
	CO2	Create classes and demonstrate object oriented programming concepts
21CS44	CO3	Demonstrate inheritance, overloading and run-time errors using exception Handling mechanism.
	CO4	Illustrate multithreading code for concurrency and develop GUI application program using Applet, event handling and database Connectivity.
	CO5	Design and develop web application using JDBC-ODBC connectivity.

Course Title: ANALYSIS AND DESIGN OF ALGORITHM LAB			
Subject Code: 21CSL45	Credits: 1	CIE: 50	
Number of Practical Hours/Week	2 Hrs	SEE: 50	
		SEE Hours: 03	

Prerequisite: C Language: Functions and Recursion

Corse Objectives : To enable the students for

- Learn different searching and sorting techniques.
- Gain knowledge of binary tree principles.
- Understand the different algorithms to solve the problems.

PART - A

Using C / C++

- 1. Write a C Program to implement Recursive Binary search and linear search and determine the time required to search an element.
- 2. Write a C Program to Sort a given set of elements using Selection sort and determine the time required to sort elements.
- 3. Write a C Program to sort a given set of elements using Merge sort method and determine the time required to sort the elements.
- 4. Write a C Program to Sort a given set of elements using Quick sort method and determine the time required sort the elements.
- 5. Write a C Program to Sort a given set of elements using Insertion sort and determine the time required to sort elements.
- 6. Write a C Program to Check whether a given graph is connected or not using DFS method.
- 7. Write a C Program to Print all the nodes reachable from a given starting node in a digraph using BFS method.
- 8. Write a C Program to Sort a given set of elements using the Heap sort method and determine the time required to sort the elements.
- 9. Write a C Program to Implement Horspool algorithm for String Matching.
- 10. Write a C Program to Implement Floyd"s algorithm for the All-Pairs Shortest-paths.
- 11. Write a C Program to implement 0/1 Knapsack problem using dynamic programming problem.

Curriculum For IV Semester 2022 - 2023

- 12. Write a C Program to Find Minimum Cost Spanning Tree of a given undirected graph using Prim"s algorithm.
- 13. Write a C Program to Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.
- 14. Write a C Program to Find a subset of a given set $S = \{sl, s2, ..., sn\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and d = 9 there are two solutions $\{1, 2, 6\}$ and $\{1, 8\}$. A suitable message is to be displayed if the given problem instance doesn't have a solution.
- 15. Write a C Program to Implement N Queen's problem using Back Tracking.

Question paper pattern:

Note: For SEE, students will be asked to execute two programs, selecting one program from each part.

Course outcomes: On completion of the course, the student will have the ability to:

Course	CO#	Course Outcome (CO)
Code		
	CO1	Apply the knowledge of Divide-and-Conquer techniques for different searching and sorting problems using recursive method and find the time complexity of algorithms.
	CO2	Demonstrate Decrease-and-Conquer techniques for solving the graph problems.
21CSL45	CO3	Design and implement algorithms for solving the graph problems by using Greedy techniques.
	CO4	Demonstrate the concepts of Dynamic Programming techniques by calculating the Binomial Co-efficient.
	CO5	Illustrate the Back Tracking algorithms for subset and N-Queen"s problems.

Course Title: JAVA Lab		
Subject Code: 21CSL46	Credit: 1	CIE: 50
Number of Practical Hours/Week	2 Hrs	SEE: 50
		SEE Hours: 03

Prerequisites: Concepts of Object Oriented Programming

Course Objectives:

- Learn to code and execute Java programs to solve problems
- Design of GUI for Java applications

Design of Got for sava applications	
 Understand Servlets for web applications and database connectivity. 	
MODULES	Teaching Hours
Preliminary practice programs:	
i) Understand and acquaint with Eclipse IDE environment. Write and execute a	
Java program to store and access student information.	
ii) Write and execute a Java program to calculate sum of series of natural numbers	
iii) Write and execute a Java program to demonstrate the scope of variables.	
iv) Write and execute a Java program to find the biggest name in the array of strings.	
v) Write and execute a Java program to demonstrate data type casting.	
Regular Laboratory exercises (for SEE):	
(Every program should be a separate project and a package in Eclipse IDE)	
1. Write a Java Program to demonstrate the creation of class for student information.	
2. Write a Java Program to implement inner class and demonstrate in access protections.	
3. Write and execute a JAVA program to demonstrate use of any five string	
functions. Use both parameterized and non-parameterized constructors for passing string inputs.	
4. Write and execute a JAVA Program to demonstrate Inheritance.(single level and multilevel)	
5. Write and execute a JAVA Program to demonstrate exception handling (both built- in and user-defined exceptions).	
6. Write and execute a JAVA Program to demonstrate polymorphism through method overloading.	
7. Write and execute a JAVA program to demonstrate method overriding. 8. Write a Java program to implement multithreading in JAVA which	
demonstrate built in methods available for thread.	

- 9. Write a JAVA program which demonstrate, create and import packages in JAVA
 - 10. Write a applet program and required HTML file to create banner applet.
- 11. Write a JAVA applet program to create a basic Applet having buttons, textarea GUI controls to add & subtract two nos. Use appropriate event listeners.
- 12. Write a Java program to store, delete and update data in a database with thesupport of JDBC-ODBC connectivity.

Open Ended Project: Servlets

Question paper pattern:

Note: For SEE, students will be asked to execute two programs, selecting one program from each part.

REFERENCES:

www.tutorialpoint.com, www.w3schools.com

Course outcomes:

Course	CO#	Course Outcome (CO)		
Code				
	CO1	Implement Java programs with basic concepts of Object oriented programming.		
	CO2	Demonstrate constructors ,Run-time and user-defined exceptions.		
21CSL46	CO3	Develop code for Inheritance, method overriding and overloading		
	CO4	Design interactive GUI Java programs using applets and event handling programs		
	CO5	Develop web application using JDBC-ODBC connectivity.		

Course Title: WEB APPLICATION DEVELOPMENT LAB				
SubjectCode:21CSL47	Credit:2	CIE:50		
Number of Tutorials Hours/Week	2Hrs	SEE:50		
Number of Practical Hours/Week	2Hrs	SEEHours:03		

Prerequisites: Java Object oriented concepts, Java Basics

Course Objectives:

- Provide the principles and programming skills for development of Web applications.
- Enables students to develop skills for client/server programming and database applications Management.

EXPERIMENTS

- 1. Create an HTML5 documents to study various HTML tags, style sheets and the tag, Borders, padding, color, and the tag.
- 2. Develop a JavaScript embedded HTML5 file for.
 - a) Generating Sum of n numbers. Use alert window to display the result
 - b) Determine the roots of Quadratic Equation. Use document. Write to produce output.
- 3. Learn various array and object operations and perform the following operations:
 - a) Create an empty array with name 'todoList'
 - b) Use 'push' operation on the 'todoList' array to add few objects each having 'id' as key and string as value (for ex {id:"a"},{id:"b"})
 - c) Use 'pop' operation to remove the last element from the 'todoList' array.
 - d) Use 'filter' operation to return a new array of objects with no object having id as "a"
- 4. Create a modal window using absolute positioning in CSS and use JavaScript for opening and closing the modal.
- 5. Learn basic flex commands and design a price card using flexbox for positioning of elements.
- 6. Design a website which dynamically adds and removes contents (To-Do list) using flexbox.
- 7. Analyze the working of CSS grid layout and create a website using grid layout.
- 8. Develop a weather website using REST API in JavaScript and use CSS Grid for positioning.
- 9. Install, configure, compare and discuss features of any open-source webserver, my SQL, PHP.
- 10. Write a PHP program to store current data-time in a COOKIE and display the Last visited on "date-time on the web page upon reopening the same page.
- 11. Run SQL queries to do the following: create a database, create table, insert rows in a table, fetch rows from a table, delete a row, and update a row.
- 12. On any HTML page, include a link for Login. Write a login page having login/password fields. Write JavaScript code to validate the login-id and password for the following: both are properly formed and at least 6 bytes long; the password contains at least one special case, one capital and one numeric character; convert the password intoitsMD5hash use table created in experiment
- 13. Open ended experiment:

Using bootstrap tool develop an e commerce website.

Curriculum For B.E. IV Semester 2021 -2022

Questionpaperpattern:ForSEEsimilarquestionrelatedtotheaboveprogramswillbe asked.				
Course outcomes:				
On completion of	the cours	se, the student will have the ability to:		
Course Code	CO#	Course Outcome(CO)		
	CO1	Design of Static web programming usingHTML5.		
	CO2	Create web pages using HTML5, Cascading Style Sheets, JavaScript.		
21CSL47 CO4		Design and implement dynamic Web pages with server side Information using Perl.		
		Write PHP programs to for client server interaction.		
	CO5	Develop database applications using MySQL database with PHP.		

Course Title: SOFTWARE ENGINEE	Credits: 3	CIE: 50
Subject Code: 21CS51		
Number of Lecture Hours/Week((L:T:P)	3:0:0 Hrs	SEE: 50
Total Number of Lecture Hours	42	SEE Hours: 03
Prerequisites: Any programming language	e	
Course objectives:		
Acquire knowledge of software do	± •	
 Understand methodologies for des 		
 Describe the development of effic).
Gain knowledge of Software Test		
Perform various software testing a	and measurement.	
MODULES	_	Teaching Hours
Module		
Overview: Introduction: FAQ's about	ut software engineering,	
Professional and ethical responsibility.		
Software Processes: Software Processes		
Process activities, The Rational Unified	Process, Computer-Aided	
Software Engineering.		08 Hrs
Requirements: Software Requirement		
functional requirements, User requirement	ents, System requirements,	
Interface specification,		
and The software requirements document Module - II	•	
Software Design: Architectural Desi	ion: Architectural design	
decisions, System organization, Modu		
Control styles. Object- Oriented des		
Classes, An Object-Oriented design p		09 Hrs
Introduction to UML Diagram, Case		
	gile methods, Extreme	
programming, Rapid application	development, Software	
prototyping.	de velopment, Software	
Module - III		
Verification And Validation: Veri		
Planning, Software inspections, A		
Verification and formal methods.	,	
Management: Managing People: Selecting	ng staff, Motivating people.	08 Hrs
Managing people, The People Capability		UO 1115
Cost Estimation:	-	
Productivity, Estimation techniques.		
Module – IV		
A Perspective on Testing, Examples: B	asic definitions, Test cases,	
Insights from a Venn diagram, Identifyin		
taxonomies, Levels of testing. Examples	: Generalized pseudo code,	
The triangle problem, The Next Date		09 Hrs
problem, The SATM (Simple Automatic		
The currency converter, Saturn windshie	eld wiper. Boundary Value	
Testing: Boundary value analysis,		
Robustness testing, Worst-case testing		
Examples, Random testing, Guidelines fo		

Module – V	08 Hrs
Path Testing: DD paths, Test coverage metrics, Basis path testing,	
guidelines and observations. Define/Use testing, Slice-based testing,	
Guidelines and observations.	
Levels of Testing: Traditional view of testing levels, Alternative	
life-cycle models, The SATM system, Separating integration and	
system testing. Integration Testing: A closer look at the SATM	
system, Decomposition-based Integration, call graph-based	
Integration.	

10 Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text book:

- 1. **Software Engineering** Ian Somerville, 10th Edition, Pearson Education, 2016.
- 2. **Software Testing, A Craftsman's Approach** Paul C. Jorgensen:, 4th Edition, Auerbach Publications, 2013.
- 3. Object Oriented System Development using UML

Ali Bahrami, MaGrawHill, 1999

Reference Books:

- 1. **Software Engineering: A Practitioners Approach -** Roger S. Pressman, 7th Edition, McGraw-Hill,2007.
- 2. **Software Engineering Theory and Practice -** Shari Lawrence Pfleeger, Joanne M.Atlee, 3rd Edition, Pearson Education, 2006.
- 3. **Software Engineering Principles and Practice -** Waman S Jawadekar, Tata McGraw Hill, 2004.

Course outcomes:

Course code	CO#	Course Outcome (CO)
	CO1	Describe software engineering process to account
		for quality issues and non-functional requirements.
	CO2	Translate specification into a design, and then realize
		that design practically, using an appropriate software
		engineering methodology.
21CS51	CO3	Explain and develop, maintain and evaluate large-scale software
210001		systems, To produce efficient, reliable, robust and cost-effective
		software solutions
	CO4	Discuss the fundamental principles of Software Testing
		with lifecycle and essential functional test methods.
	CO5	Perform Basic test design and measurement techniques.

Course Title: COMPUTER NETWORKS			
Subject Code: 21CS52	Credit:4	CIE:50	
Number of Lecture Hours/Week(L:T:P)	3:0:2Hrs	SEE:50	
Total Number of Lecture Hours	42	SEE Hours: 03	

Prerequisites : Nil

Course Objectives:

- Develop an understanding about architectural principles of computer networks, network devices and their functions.
- Gain knowledge about functions and services of OSI layers and TCP/IP protocol.
- Learn how internet works, understand working of routing protocols and study implementation issues in internetworking.
- Understand transport and application layer protocols.

MODULES	Teaching Hours
Module I Introductory concepts& Physical Layer: Network Hardware, Network Software, Reference Models, Example Networks, The Theoretical Basis for Data Communication, Guided Transmission Media, Wireless Transmission. 1. Experimental study of various network components and devices.	08 Hrs
 a. Study different network cables and Prepare, test straight over and cross over cabling using crimping tool. b. Install and configure wired and wireless NIC. Demonstrate file transfer in wired and wireless LAN. c. Install and configure network devices hub. d. Use CISCO packet tracer to d. Build a Local Area Network of 4 to 6 nodes using hub /repeater. a. Build a peer to peer network 	
Module II Data Link Layer & Medium Access Control Sub-layer: Data link layer design issues, Error detection & correction, Elementary data link protocols, Sliding window protocols, Example data link protocols, The channel allocation problem, Multiple access protocols. 1. Implement sliding window protocol. 2. Implement go back N protocol.	08Hrs

	Module III	00 II
1	ium Access Control Sub-layer: Ethernet, Wireless LANS, Broadband Wireless,	08 Hrs
Blue	tooth, Data link layer switching.	
1. I	nstall and configure network devices Switch.	
	Jse CISCO packet tracer to	
a.	Build a Local Area Network of 4 to 6 nodes using switch.	
b.	Build a Local Area Network of 4 to 6 nodes using hub and a switch and study	
the dif	ferences between repeater, hub and switch.	
c.	identify broadcast and collision domain.	
3. L	Jse wireshark to	
	Examine Ethernet packets and ARP packets.	
4. T	o study performance of CSMA/ CD protocol.	
	Module IV	
The	Network Layer: Network layer design issues, Routing Algorithms, Congestion	08 Hrs
	rol algorithms, Internetworking, The network layer in the internet.	
1	.Install and configure network devices Routers.	
2.	Use CISCO packet tracer to	
a.	Design and apply IP addressing scheme for a given topology	
b.	Connect two or three LAN's via a router. Trace how routing happens via	
simula	ation, and study the working of router.	
c.	Design multiple subnets with suitable number of hosts	
d.	Demonstrate static routing and dynamic routing for given topology	
e.	Configure DHCP server	
f.	Create subnets , Configure Host IP, Subnet Mask and Default Gateway in a	
LAN	Configure DID/OSDE	
g. h.	Configure RIP/OSPF. Use wireshark to Analyze IP Datagram and IP fragmentation received during the	
	ion of trace route command.	
i.	Run ping command and examine ICMP packets using wireshark.	
7533	Module V	
	Transport Layer and Application Layer protocols: The transport services.	10 Hrs
1	nents of transport protocols, The internet transport protocols: UDP The internet port protocols: TCP, DNS-The Domain name system, Electronic mail, The	TO IILS
	d wide web.	
	Use wireshark to	
a.	Examine UDP and TCP ports and handshake segments	
b.	Use packet tracer to configure DHCP server, DNS server, SMTP server	
	Implement Client Server Program in C/ Java.	

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

TEXT BOOKS:

- 1. Andrew S. Tanenbaum: Computer Networks, 5th Edition, Pearson, 2010.
- 2. Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 5th Edition, Elsevier, 2010.

REFERENCE BOOKS:

- 1. Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol suite, Sixth Edition, McGraw Hill,2022.
- 2. Kurose and Ross, Computer Networking: A Top- Down Approach, Pearson, Sixth Edition, 2021
- 3. William Stallings: Data and Computer Communication, 8th Edition, Pearson Education, 2007.
- 4. Alberto Leon-Garcia and Indra Widjaja: Communication Networks -Fundamental Concepts and Key Architectures, 2nd Edition Tata McGraw-Hill,2004.

Course outcomes:

Course Code	CO#	CourseOutcome(CO)
	CO1	Understand basic concepts, study OSI, TCP/IP model with functions of each layer and understand wired and wireless transmission fundamentals.
21CS52	CO2	Describe error detection, correction methods, data link layer functions and evaluate channel access mechanisms.
210852	CO3	Study and compare medium access protocols for wired and wireless LAN's
	CO4	Demonstrate routing layer functions, issues and routing protocols in Internet.
	CO5	Explore transport layer functions, issues and application layer protocols.

Course Title: OPERATING SYSTEM					
Subject Code:21CS53	Credit:3	CIE:50			
Number of Lecture Hours/Week(L:T:P)	3:0:0 Hrs	SEE:50			
Total Number of Lecture Hours	42	SEEHours:03			

Prerequisites: Microprocessor

Course Objectives:

- Learn services provided by the operating system and design of operating system
- Gain knowledge on how processes are synchronized and scheduled how different resources are managed.
- Understand structure and organization of file system and approaches to memory management.

MODULES	Teaching Hours
Module– I	
Introduction: Operating Systems, Computer-System Organization, Computer-	
System Architecture, Operating-System Operations, Process Management,	
Memory Management, Storage Management, Security and Protection, Kernel	
Data Structures, Computing Environments.	
Operating-System Structures: Operating-System Services, User and	
Operating-System Interface, System Calls, Types of System Calls, System	
Programs, Operating-System Design and Implementation, Operating System	00 11
Structure.	08 Hrs
Case Studies: Architecture of UNIX, The Kernel of Unix; The Kernel of	
Solaris; Architecture of Windows.	
Module-II	
Process Management : Process Concept, Process Scheduling, Operations on	
Processes, Interprocess Communication, Communication in Client-Server	
Systems.	00 II
Multithreaded Programming: Overview, Multicore Programming,	08 Hrs
Multithreading Models, Thread Libraries, Implicit Threading, Threading Issues	
Module– III	
Process Scheduling: Basic Concepts, Scheduling Criteria, Scheduling	
Algorithms, Thread Scheduling, Multi-Processor Scheduling, Real-Time CPU	
Scheduling	
Process Synchronization: The Critical-Section Problem, Petersons Solution,	09 Hrs
Synchronization hardware, Mutex Locks, Semaphores, Classic Problems of	U9 HIS
Synchronization, Monitors.	
Module- IV	
Deadlocks: System Model, Deadlock Characterization, Methods for Handling	
Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection,	
Recovery from Deadlock.	
Memory Management: Background, Swapping, Contiguous Memory	08 Hrs
Allocation, Segmentation, Paging, Structure of the Page Table.	

Module-V

Virtual Memory: Background, Demand Paging, Copy-on-Write, Page Replacement, Allocation of Frames, Thrashing, Memory mapped files, Allocating Kernel Memory

File System: File-System Interface: File Concept, Access Methods, Directory and disk Structure, File system Mounting, File Sharing, and Protection.

09 Hrs

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Textbook:

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts, 9thEdition, Wiley-India,2018.
- 2. D.M Dhamdhere, Operating systems-A concept based Approach, 3rd Edition, Tata MCSraw-Hill, 2012.

Reference Books:

- 1. P.C.P. Bhatt: Operating Systems, 2nd Edition, PHI, 2006.
- 2. Harvey MDeital: Operating systems, 3rd Edition, Addison Wesley, 2003.

Course outcomes:

Course code	CO#	Course Outcome(CO)			
	CO1	Describe the functions of operating systems and its structures			
	CO2 Illustrate process concepts and management models.				
21CS53	CO3	Apply Scheduling algorithms and differentconcurrencycontroltechniquestoprovideco-ordinationamongprocesses for the global data.			
	CO4	Apply deadlock detection and prevention algorithms and memory management and illustrate the concept of paging, segmentation and swapping policies.			
	CO5	Discuss Virtual memory management and describe file system interface.			

Course Title: DATABASE MANAGEMENT SYSTEM				
Subject Code: 21CS54	Credit :3	CIE: 50		
Number of Lecture Hours/Week(L:T:P)	3:0:0 Hrs	SEE: 50		
Total Number of Lecture Hours	42	SEE Hours: 03		

Prerequisites: knowledge of C, C++ Programming Principles, Data Structures

Course Objectives:

- Learn and practice data modeling using entity relationship and developing database design
- Understand the use of SQL
- Understand the functional dependency and Normalization Techniques.
- Understand the online transaction processing and recovery methods.

MODULES	Teaching Hours
Module I Introduction: An example, Characteristics of Database approach, Actors on the screen, Workers behind the scene, Advantages of using DBMS approach, A brief history of database applications, when not to use a DBMS. Data models, schemas and instances, Three-schema architecture and data independence, Database languages and interfaces. Entity-Relationship Model: Using High-Level Conceptual Data Models for Database Design, An Example Database Application, Entity Types, Entity Sets, Attributes and Keys, Relationship types, Relationship Sets, Roles and Structural Constraints, Weak Entity Types, Refining the ER Design, ER Diagrams, Naming Conventions and Design Issues, Relationship types of degree higher than two, Subclasses, Super Classes and Inheritance, Specialization and Generalization.	10 Hrs
Module II Relational Model: Relational Model Concepts, Relational Model Constraints and Relational Database Schemas. The Relational Algebra and relational calculus, SQL-99: Schema Definition, Constraints, Queries, and Views, SQL Programming Techniques.	8 hours
Module III Database Design - 1: Informal Design Guidelines for Relation Schemas, Functional Dependencies, And Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Code Normal Form. Database Design – 2: Properties of Relational Decompositions, Algorithms for Relational Database Schema Design, Multivalued Dependencies and Fourth Normal Form, Join Dependencies and Fifth Normal Form, Inclusion Dependencies, Other Dependencies and Normal Forms	8 hours
Module IV Transaction Processing Concepts: Introduction to Transaction Processing, 12 Transaction and System Concepts, Desirable Properties of Transactions, Characterizing Schedules Based on Recoverability, Characterizing Schedules Based on Serializability, Transaction Support in SQL. Concurrency Control Techniques: Two- Phase Locking Techniques for Concurrency Control, Concurrency Control Based on Timestamp Ordering, Multiversion Concurrency Control Techniques, Validation Concurrency Control Techniques, Granularity of Data items and Multiple Granularity Locking, Using Locks for Concurrency Control in Indexes.	8 hours
Module V Database Recovery Techniques: Recovery Concepts, Recovery Techniques Based on Deferred Update, Recovery Techniques Based on Immediate Update, Shadow Paging, The ARIES Recovery Algorithm, Recovery in Multi database Systems, Database Backup and Recovery from Catastrophic Failures. Database Security and	8 hours

Authorization: Introduction to Database Security Issues, Discretionary Access Control Based on Granting and Revoking Privileges, Mandatory Access Control and Role- Based Access Control for Multilevel Security, Introduction to Statistical Database Security, Introduction to Flow Control, Encryption and Public Key Infrastructures

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text books:

- 1. Fundamentals of Database Systems Elmasri and Navathe, 7th Edition, Addison-Wesley, 2016.
- 2. SQL The Complete Reference- James R Groff, Paul N. Weinberg and Andrew J. Oppel, 3rd Edition, Mc-Graw Hill, 2009. (Module-II)

Reference Books:

- 1. Data Base System Concepts- Silberschatz, Korth and Sudharshan, 5th Edition, Mc-Graw Hill, 2006.
- 2. Database Management Systems -Raghu Ramakrishnan and Johannes Gehrke 3rd Edition. MCSraw-Hill, 2003.
- **3.** An Introduction to Database Systems C.J. Date, A. Kannan, S. Swamynatham, 8th Edition, Pearson Education, 2006.

Course outcomes:

Course Code	CO#	Course Outcome (CO)
	CO1	Understand the fundamentals and applications of data base management system.
	Implement and Interact database with SQL statements.	
21CS54	CO3	Design data base by applying ER diagram, relational model, functional dependency and Normalization Techniques
	CO4	Illustrate and understand the basic issues of transaction processing and concurrency control.
	CO5	Demonstrate different recovery techniques and security issues

Course Title: DATABASE MANAGEMENT SYSTEM LAB					
Subject Code: 21CSL55	Credits: 1	CIE: 50			
Number of Practical Hours/Week/batch (L:T:P)	0:0:2 Hrs	SEE: 50			
		SEE Hours: 03			

Prerequisite: Knowledge of C, C++ Programming Principles, Data Structures

Course Objectives:

The student should be made to:

- Learn to create and use a database
- Be familiarized with a query language
- Have hands on experience on DDL Commands
- Have a good understanding of DML Commands and DCL commands
- Familiarize advanced SQL queries.
- Be Exposed to different applications.

LIST OF EXPERIMENTS:

- 1. Implementation of DDL commands of SQL with suitable examples.
 - Create table
 - Alter table
 - Drop Table
- 2. Implementation of DML commands of SQL with suitable examples
 - Insert
 - Update
 - Delete
- 3. Implementation of different types of function with suitable examples
 - Number function
 - Aggregate Function
 - Character Function
 - Conversion Function
 - Date Function
- 4. Implementation of different types of operators in SQL
 - Arithmetic Operators
 - Logical Operators
 - Comparison Operator
 - Special Operator
 - Set Operation
- 5. Implementation of different types of Joins
 - Inner Join
 - Outer Join
 - Natural Join etc..
- 6. Study and Implementation of
 - Group By & having clause
 - Order by clause
 - Indexing
- 7. Study & Implementation of
 - Sub queries

- Views
- 8. Study & Implementation of different types of constraints.
- 9. Study & Implementation of Database Backup & Recovery commands, Rollback, Commit, Savepoint.
- 10. Creating Database /Table Space, Managing Users: Create User, Delete User, Managing roles:-Grant, Revoke
- 11. Study & Implementation of PL/SQL.
- 12. Study & Implementation of SQL Triggers.

Mini project (Application Development using: Front end: VB/VC ++/JAVA or Equivalent Back end: Oracle / SQL / MySQL/ PostGress / DB2 or Equivalent).

- 1. Inventory Control System.
- 2. Core Banking system
- 3. Hospital Management System.
- 4. Railway Reservation System.
- 5. Personal Information System.
- 6. Web Based User Identification System.
- 7. Timetable Management System.
- 8. Hotel Management System.
- 9. Library management
- 10. Electricity bill.
- 11. Hostel management.
- 12. Air reservation
- 13. Company management system.
- 14. Student information system.
- 15. University database system.

Guidelines for implementation of mini project

- 1. Draw ER Diagram.
- 2. Convert ER diagram to table/schema.
- 3. Apply normalization.
- 4. Design and implementation.
- 5. Generate report.

Note: Mini Projects will be considered for CIE and SEE

Course outcomes:

Course	CO#	Course Outcome (CO)	
Code			
	CO1	Design and implement a database schema for a given problem	
		domain, Populate and query a database.	
	CO2	Design database using PL/SQL, Triggers, Exception Handling	
21CSL55	CO3	Create and maintain tables using SQL.	
	CO4	Design database with constraints	
	CO5	Design and implement database for real world problem	

RESEARCH METHODOLOGY & INTELLECTUAL PROPERTY RIGHTS [As per Choice Based Credit System (CBCS) Scheme] (From the academic year 2022-23) Course Code 21RMI56 CIE Marks 50 02 Credits SEE Marks 50 Theory Course Type Lecture Hours/Week (L-T-P) 1-2-0-0 Total Marks 100 Total Hours 28 Hours SEE Hours

Course Objectives:

- CO1: To Understand the knowledge on basics of research and its types.
- CO2: To Learn the concept of defining research problem and Literature Review, Technical Reading.
- CO3: To learn the concept of attributions and citation and research design.
- CO4: Concepts, classification, need for protection, International regime of IPRs WIPO, TRIPS, Patent Meaning, Types, surrender, revocation, restoration, Infringement, Procedure for obtaining Patent and Patent Agents.
- CO5: Meaning, essential requirements, procedure for registration and Infringement of Industrial Designs, Copyright.

MODULES	Hours
	Hours
Module-1 Introduction: Meaning of Research, Objectives of Engineering Research, and Motivation in Engineering Research, Types of Engineering Research, Finding and Solving a Worthwhile Problem. Ethics in Engineering Research, Ethics in Engineering Research Practice, Types of Research	06 Hours
Misconduct, Ethical Issues Related to Authorship.	
Module - 2 Defining the research problem - Selecting the problem. Necessity of defining the problem Techniques involved in defining the problem- Importance of literature review in defining a problem Literature Review and Technical Reading, New and Existing Knowledge, Analysis and Synthesis of Prior Art Bibliographic Databases, Web of Science, Google and Google Scholar, Effective Search: The Way Forward Introduction to Technical Reading Conceptualizing Research, Critical and Creative Reading, Taking Notes While Reading, Reading Mathematics and Algorithms, Reading a Datasheet.	06 Hours
Module - 3 Research design and methods - Research design - Basic principles. Need of research design Features of good design- Important concepts relating to research design - Observation and Facts Attributions and Citations: Giving Credit Wherever Due, Citations: Functions and Attributes, Impact of Title and Keywords on Citations, Knowledge Flow through Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments.	06 Hours

					_
м	or	ш	Δ	_	4

Basic Concepts of Intellectual Property (IP), Classification of IP, Need for Protection of IP, International regime of IPRs - WIPO, TRIPS.

Patents: Meaning of a Patent – Characteristics/ Features . Patentable and Non-Patentable Invention. Procedure for obtaining Patent. Surrender of Patent, revocation & Patents and Patents, Infringement of Patents and related

05 Hours

remedies (penalties). Different prescribed forms used in Patent Act. Patent agentsqualifications and disqualifications Case studies on patents - Case study of Neem petent, Curcuma(Turmeric)patent and Basmati rice patent, Apple inc.v Samsung electronics co.Ltd

Module - 5

Industrial Design : Introduction to Industrial Designs. Essential requirements of Registration. Designs which are not registrable, who is entitled to seek Registration, Procedure for Registration of Designs

05 Hours

Copy Right Meaning of Copy Right. Characteristics of Copyright. Who is Author, various rights of owner of Copyright. Procedure for registration. Term of copyright, Infringement of Copyright and Its remedies. Software Copyright.

Assessment Details(both CIE and SEE)

The weight age of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semesterend examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE(Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20Marks(duration 01hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10Marks

- 4. First assignment at the end of 4th week of the semester
- Second assignment at the end of 9th week of the semester Groupdiscussion/ Seminar/quizanyoneofthreesuitablyplannedtoattaintheCOsandPOsfor20 Marks (duration 01 hours)
 - 6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50marks** (to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the Outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- The question paper will be set for 100marks. Marks scored shall be proportionally reduced to 50 marks
- 2. The question paper will have ten questions. Each question is set for 20marks.
- 3. There will be 2questions from each module .Each of the two questions is under a module (with a maximum of 2 sub-questions).
- 4. The students have to answer 5 full questions, selecting one full question from each module.

Marksscoredbythestudentswillbeproportionallyscaleddownto50marks

Course Outcomes

At the end of the course the student will be able to:

- CO1.To know them leaning of engineering research.
- CO2. To know the defining of research problem and procedure of Literature Review.
- CO3. To know the Attributions and Citations and research design.
- CO4. Highlights the basic Concepts and types of IPRs and Patents
- CO5. Analyse and verify the procedure for Registration of Industrial Designs & Copyrights.

Textbook

- Research Methodology: Methods and Techniques C.R.Kothari, Gaurav Garg New Age International 4thEdition, 2018
- Dipankar Deb•RajeebDey, Valentina E. Balas "Engineering Research Methodology", ISSN 1868-4394
 ISSN 1868-4408 (electronic), Intelligent Systems Reference Library, ISBN 978-981-13-2946-3
 ISBN 978-981-13-2947-0 (eBook), https://doi.org/10.1007/978-981-13-2947-0.3
- 3. Dr. M.K. Bhandari Law relating to Intellectual property January 2017 (Publisher By Central Law Publications).
- Dr. R Radha Krishna and Dr. S Balasubramanain "Text book of Intellectual Property Right". First edition, New Delhi 2008. Excel books.
- 5. P Narayan "Text book of Intellectual Property Right". 2017 ,Publisher: Eastern Law House **Reference Book:**
- 1. DavidV.Thiel "ResearchMethodsforEngineers" Cambridge University Press, 978-1-107-03488-4-
- Nishith Desai Associates Intellectual property law in India Legal, Regulatory & Tax NPTEL:

INTELLECTUAL PROPERTY by PROF.FEROZ ALI , Department of Humanities and Social Sciences IIT Madras

https://nptel.ac.in/content/syllabus_pdf/109106137.pdf www.wipo.int www.ipindia.nic.in

ENVIRONMENTAL STUDIES [As per Choice Based Credit System (CBCS) Scheme] (From the academic year 2022-23) Course Code 21CIV57 CIE Marks 50 01 Credits SEE Marks 50 Theory Course Type Lecture Hours/Week (L-T-P) 0-2-0-0 Total Marks 100 Total Hours 28 Hours SEE Hours 01

Course Objectives:

- To create environmental awareness among the students.
- To gain knowledge on different types of pollution in the environment.

Teaching-Learning Process(General Instructions)

These are sample Strategies; which teacher can use to accelerate the attainment of the various course outcomes.

- Apart from conventional lecture methods various types of innovative teaching techniques through videos and animation films may be adopted so that the delivered lesson can progress the students in theoretical, applied and practical skills.
- 2. Environmental awareness program on off campus
- Encourage collaborative (Group Learning) Learning in the class. Seminars, surprise tests and Quizzes may be arranged for students in respective subjects to develop skills.

Modules	Hours
Module - I Ecosystems (StructureandFunction): Forest, Desert, Wetlands, River, OceanicandLake. Biodiversity:Types,Value;Hot spots; Threatsand Conservation of biodiversity, Forest Wealth, And Deforestation.	05 Hours
Module - II Advances in Energy Systems (Merits, Demerits, Global Status and Applications): Hydrogen, Solar, OTEC, Tidal and Wind. Natural Resource Management (Concept and case-studies): Disaster Management, Sustainable Mining, case studying, and Carbon Trading	05 Hours
Module-III Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case-studies): Surface and Ground Water Pollution; Noise pollution; Soil Pollution and Air Pollution. Waste Management & Public Health Aspects: Bio-medical Wastes; Solid waste; Hazardous, Wastes; E-wastes; Industrial and Municipal Sludge.	06 Hours

Module-IV Global Environmental Concerns (Concept, policies and case-studies): Groundwater depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem In drinking water; Resettlement and rehabilitation of people, Environmental Toxicology.	06 Hours
Module - V Latest Developments in Environmental Pollution Mitigation Tools (Concept and Applications): G.I.S. & Remote Sensing, Environment Impact Assessment, Environmental Management Systems, ISO14001; Environmental Stewardship- NGOs. Field work: Visit to an Environmental Engineering Laboratory or Green Building or Water Treatment Plant or Waste water treatment Plant; ought to be Followed by understanding of process and its brief Documentation in the form of report.	06 Hours

Course outcome(Course Skill Set)

At the end of the course the student will be able to:

- CO1: Understand the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale,
- CO2: Develop critical thinking and/or observation skills, and apply them to the analysis of a problem or question related to the environment.
- CO3: Demonstrate ecology knowledge of a complex relationship between biotic and a biotic components.
- CO4: Apply their ecological knowledge to illustrate and graph a problem and describe the realities that managers face when dealing with complex issues.
- CO5: Understand Latest Developments in Environmental Pollution Mitigation Tools Concept and Applications of G.I.S. & Remote Sensing.

Assessment Details (both CIE and SEE)

The weight age of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE(ContinuousInternalEvaluation)andSEE(SemesterEndExamination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20Marks (duration 01 hour)

- 1. First test at the end of5th week of the semester
- Second test a the end of the 10th week of the semester
- 3. Third test at the end of

the15thweek of the semester Two

assignments each of 10 Marks

- 4. First assignment at the endof4thweek of the semester
- Second assignment at the end of 9thweek of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the Cos and Pos for 20

Marks (duration 01 hours)

At the end of the 13thweek of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be

Scaled down to 50 marks

(to have less tresses CIE, the portion of the syllabus should not be common/repeated for any of the method of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 01 hours)

Question paper pattern:

- 1. The Question paper will have 50 objective questions.
- Each question will before 01marks
- 3. Students will have to answer all the guestions on an OMR Sheet.
- 4. The Duration of the Exam will be 01 hour

Suggested Learning Resources:

Books

- Environmental studies, Benny Joseph, Tata Mcgraw -Hill 2ndedition 2012.
- 2. Environmental studies, SM Prakash, pristine publishing house, Mangalore3rdedition-2018.

Reference Books:-

- BennyJoseph, Environmental studies, TataMcgraw-Hill2ndedition 2009.
- 2. M. Ayi Reddy TextbookofenvironmentalscienceandTechnology,BSpublications2007
- 3. Dr.B.SChauhan, Environmental studies, university of science press 1 stedition

Course Title: PYTHON PROGRAMMING			
Subject Code: 21CSAE581	Credit: 1	CIE: 50	
Number of Practical Hours/Week(L:T:P)	0:0:2 Hrs	SEE: 50	
Total Number of Practical Hours	24	SEE Hours: 03	

Pre-requisites: Knowledge of C and (or) C++ programming language, Concepts of Object oriented programming.

Course objectives:

- Write, test, and debug simple Python programs to solve scientific problems.
- Use Python lists, tuples, sets and dictionaries for representing compound data.
- Develop structured Python programs by defining functions and calling them.
- Develop object oriented programming concepts in Python.
- Basic data analysis and visualization by Numpy and matplotlib libraries.

Programs

- 1. The structure of Python Programming through example programs.
- 2. Demonstrate the working of all kinds of operators.
- 3. Demonstrate the decision making and Iterative statements in Python
 - i) "if" and its variants ii) while and for loops.
- 4. Demonstrate the use of various string functions like count (), replace (), split (), join (), upper (), lower (), capitalize () etc.
- 5. Demonstrate the file operations in python.
- 6. Demonstrate creation and different operations on List data structure in python.
- 7. Demonstrate creation and different operations on Tuple data structure in python.
- 8. Demonstrate creation and different operations on Set data structure in python.
- 9. Demonstrate creation and different operations on Dictionary data structure in python.
- 10. Demonstrate creation and use of Functions in python with all kinds of "parameters" used with functions.
- 11. Demonstrate different sorting operations in python and complex time difference.
- 12. Demonstrate creating objects and inheritance.
- 13. Demonstrate NumPY library Array Operations, Mathematical Functions, Sort, Search and Counting Functions
- 14. Demonstrate Matplotlib Library Introduction, Pyplot API, Types Of Plots, Histogram Using Matplotlib , I/O With Numpy.

Text books:

- 1. Learning Python, Mark Lutz, Orielly, 3rd Edition 2007.
- 2. Think Python, 2nd Edition, 2017 Allen Downey, Green Tea Press

Reference Links: https://www.w3schools.com/python/https://www.geeksforgeeks.org/python-programming-language/

Course outcomes:

Course Code	CO#	Course Outcome (CO)	
	CO1	Understand python structure and use of operators, string functions, conditional	
		and looping statements.	
	CO2	Use of Python lists, tuples, sets and dictionaries for representing compound	
21CSAE581		data.	
	CO3	Develop modular python programs by defining functions.	
	CO4	Implement programs with object oriented concepts.	
	CO5	Develop program to utilize Numpy libraries for data analysis and visualize data	
		with matplotlib library.	

Course Title: ENTREPRENEURSHIP, MANAGEMENT AND FINANCE				
Subject Code: 21HU61	Credits: 3	CIE: 50		
Number of Lecture Hours/Week(L:T:P)	3:0:0 Hrs	SEE: 50		
Total Number of Lecture Hours	42	SEE Hours: 03		
Drama quigitage Mana				

Prerequisites: None

Course Objectives :

To enable the students to obtain the basic knowledge about Entrepreneurship and

Management and finance in the following topics:-

- The Meaning, Functions, Characteristics, Types, Role and Barriers of Entrepreneurship,
- Government Support for Entrepreneurship
- Management Meaning, nature, characteristics, scope, functions, role etc and Engineers social responsibility and ethics
- Preparation of Project and Source of Finance
- Fundamentals of Financial Accounting
- Personnel and Material Management, Inventory Control

 MODITES

MODULES	Teaching Hours
Module – I	
ENTREPRENEUR : Meaning of Entrepreneur; Functions of an Entrepreneur;	
Characteristics of an entrepreneur , Types of Entrepreneur; Intrapreneurs – an	
emerging class; Role of Entrepreneurs in economic development; Barriers to	
entrepreneurship, Government Support for Innovation and Entrepreneurship in	
India - Startup-India, Make-in-India, PMMY, AIM, STEP, BIRAC, Stand-up	08 Hrs
India, TREAD	00 1118
Module - II	
MANAGEMENT: Introduction – Meaning – nature and characteristics of	
Management, Scope and functional areas of management, Levels of	
Management, Henry Fayol - 14 Principles to Management, McKinsey's 7-S	
Model, Management by objective(MBO) – Meaning, process of MBO, benefits	09 Hrs
and drawbacks of MBO	
Module - III	
PREPARATION OF PROJECT AND SOURCE OF FINANCE:	
PREPARATION OF PROJECT: Meaning of project; Project Identification;	
Project Selection; Project Report; Need and Significance of Report; Contents; SOURCE OF FINANCE: Long Term Sources(Equity, Preference, Debt	
Capital, Debentures, loan from Financial Institutions etc) and Short Term	00 11
Source(Loan from commercial banks, Trade Credit, Customer Advances etc)	08 Hrs
Module – IV	
FUNDAMENTALS OF FINANCIAL ACCOUNTING: Definition, Scope and	
Functions of Accounting, Accounting Concepts and Conventions: Golden	
rules of Accounting, Final Accounts - Trading and Profit and Loss Account,	
Balance sheet	00 11
	09 Hrs
$\mathbf{Module} - \mathbf{V}$	
PERSONNEL MANAGEMENT, MATERIAL MANAGEMENT AND	
INVENTORY CONTROL: PERSONNEL MANAGEMENT: Functions of	08 Hrs
Personnel Management, Recruitment, Selection and Training, Wages, Salary	00 1113
and Incentives. MATERIAL MANAGEMENT AND INVENTORY	
CONTROL: Meaning, Scope and Objects of Material Management. Inventory	
z z z z z z z z z z z z z z z z z z z	

Control- Meaning and Functions of Inventory control; Economic Order
Quantity(EOQ) and various stock level (Re-order level, Minimum level,
Maximum level, Average level and Danger level)

Pattern of question paper

Solve all five full questions selecting at least one question from each module

Text book:

- 1. Financial Accounting -B S RAMAN- United Publishers Manglore, Maheswar S N & Maheswari S K-Vikas Publishing House. January 2018
- 2. Management & Entrepreneurship- K R Phaneesh- Sudha Publications January 2018, Prof Manjunatha & Amit kumar G laxmi Publication, January 2011. Veerbhadrappa Havina -Published by New Age International (P) Ltd., 2009.
- 3. Principles of Management First Edition (English, G. Murugesan), Laxmi Publications New Delhi
- 4. Management by Objectives (Mbo) in Enterprises: 21 December 2018 by Dr Wazir Ali Khan

Reference Books:

- 1. Industrial Organization & Engineering Economics-T R Banga & S C Sharma- Khanna Publishers, Dehli.
- 2. NPTEL: ENTREPRENEURSHIP: PROF. C BHAKTAVATSALA RAO Department of Management Studies IIT Madras https://nptel.ac.in/courses/110/106/110106141/
- 3. https://www.businessmanagementideas.com/notes/management-notes/notes-on-management-in-an-organisation/4669
- 4. https://vskub.ac.in/wp-content/uploads/2020/04/Unit-5-ppmb.pdf

Course outcomes:

on completion of the course, the student will have the upinty to:			
Course code	CO#	Course Outcome (CO)	
	CO1	Develop Entrepreneurship skills	
	CO2	Apply the concepts of management and Management By Objective(MBO)	
21HU61	CO3	Prepare project report & choose different Source of Finance.	
	CO4	Apply Fundamentals of Financial Accounting and interpret the final accounts	
	CO5	Apply personnel management skills, Material and inventory control techniques	

Course Title: COMPUTER GRAPHICS AND FUNDAMENTALS OF IMAGE PROCESSING				
Subject Code: 21CS62	Credits :03	CIE: 50		
Number of Lecture Hours/Week(L:T:P)	3:0:2 Hrs	SEE: 50		
Total Number of Lecture Hours	42 Hrs	SEE Hours: 03		

Prerequisites: Nil

Course Objectives:

- Identity and explain the core concepts of computer graphics.
- Apply graphics programming techniques and create effective OpenGL programs.
- To Study the Image fundamental and mathematical transformations necessary for image processing.
- Understand the image enhancement techniques, image restoration and segmentation techniques.

MODULES	Teaching Hours
Module - I Basics of Computer Graphics and OpenGL: Computer Graphics: Basics of	
computer graphics, Application of Computer Graphics, Video Display Devices, graphics software. OpenGL: Introduction to OpenGL, coordinate reference frames, specifying two-dimensional world coordinate reference frames in OpenGL, OpenGL point functions, OpenGL line functions, point attributes, line attributes, curve attributes, OpenGL point attribute functions, OpenGL line attribute functions, Line drawing algorithms(DDA, Bresenham's), circle generation algorithms (Bresenham's).	08 Hrs
Module - II	
Fill area Primitives, 2D Geometric Transformations and 2D viewing: Fill area Primitives: Polygon fill-areas, OpenGL polygon fill area functions, fill area attributes, general scan line polygon fill algorithm, OpenGL fill-area attribute functions. 2DGeometric Transformations: Basic 2D Geometric Transformations, matrix representations and homogeneous coordinates. Inverse transformations, 2DComposite transformations, other 2D transformations, raster methods for geometric transformations, OpenGL raster transformations, OpenGL geometric transformations function, 2D viewing: 2D viewing pipeline, OpenGL 2D viewing	08 Hrs
functions.	
Module – III Digital Image Fundamentals: Introduction to Digital Image Processing, Examples of fields that use DIP, Fundamental Steps in Digital Image Processing, Image Sensing and Acquisition: image acquisition using a single sensing element, image acquisition using sensor strips, image acquisition using sensor arrays, a simple image formation model, Image Sampling and Quantization: basic concepts in sampling and quantization, representing digital images, Some Basic Relationships between Pixels. Module – IV	08 Hrs
Image Enhancement in the Spatial Domain:	
Basics of intensity transformations and spatial filtering, Some Basic Intensity Transformation Functions, Histogram Processing: Histogram equalization, and Matching, Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters, Frequency Domain: Preliminary Concepts, The Discrete Fourier Transform (DFT) of One variable, The Discrete Fourier Transform (DFT) of Two Variables.	09Hrs

Module - V

Restoration: A model of the image degradation/restoration process , Noise models, Restoration in the Presence of Noise Only using Spatial Filtering and Frequency Domain Filtering **Image segmentation**: Detection of discontinuities, edge linking and boundary detection, Thresholding, Region based segmentation

09Hrs

Lab Programs:

- 1. Program to draw points, line, circle, Polygon and rectangle on a plane using OpenGL.
- 2. Program to draw a color cube and spin it using OpenGL transformation matrices
- 3. Rotation of House about Fixed Point
- 4. Program to fill any given polygon using scan line area filling algorithm
- 5. Program to draw a rotating cube with texture.
- 6. Program to demonstrate DDA Line Drawing Algorithm.
- 7. a).Program to demonstrate Bresenham's Line Drawing Algorithm
 - b). Program to demonstrate Bresenham's Circle Drawing Algorithm
- 8. a). Simulation and Display of an Image, Negative of an Image(Binary & Gray Scale)
 - b). Implementation of Relationships between Pixels
- 9. Contrast stretching of a low contrast image, Histogram, and Histogram Equalization
- 10. Computation of Mean, Standard Deviation, Correlation coefficient of the given Image
- 11. Implementation of Image Smoothening Filters (Mean and Median filtering of an Image).
- 12. Perform noise removal using different spatial filters and compare their performances.
- 13. Perform the following Image segmentation operations: Edge detection, line detection and point detection.
- 14. Implement region based segmentation of image.

Question paper pattern:

The question paper will have ten questions.

There will be $\bar{2}$ questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Donald Hearn & Pauline Baker: Computer Graphics with OpenGL Version,3rd / 4th Edition, Pearson Education,2011
- 2. Gonzalez and. Richard E. Woods' Digital Image Processing, Fourth Edition, Global Edition 2018.

Reference Books:

- 1. Digital Image Processing- S.Jayaraman, S. Esakkirajan, T. Veerakumar, TataMcGrawHill2014.
- 2. Digital Image Processing (with Matlab and Labview), Vipul singh, elsiver. Filip learning
- 3. William M Newman and Robert F Sproull, Principles of Interactive Computer Graphics, McGraw Hill, 2001.

Course outcomes:

Course	CO#	Course Outcome (CO)
Code		
	CO1	Describe the basics of Computer Graphics and OpenGL.
	CO2	Illustrate 2D Transformations and Viewing.
21 00 (2	CO3	Describe the fundamentals concepts of digital image processing
21CS62	CO4	Demonstrate the techniques for Image enhancement in Spatial and frequency
		domain.
	CO5	Analyze Images restoration and Segmentation operations.

Course Title: ARTIFICIAL INTELLIGENCEAND MACHINE LEARNING			
Subject Code: 21CS63	Credit:03	CIE: 50	
Number of Lecture Hours/Week(L:T:P)	3:0:0 Hrs	SEE: 50	
Total Number of Lecture Hours	42	SEE Hours: 03	

Prerequisites: Discrete Mathematics, Statistics.

Course Objectives:

- To Apply a given AI technique to a given concrete problem
- To Implement non-trivial AI techniques in a relatively large system
- To understand uncertainty and Problem solving techniques.
- To understand various symbolic knowledge representation to specify domains and reasoning tasks of a situated software agent.
- Acquiring the fundamentals of machine learning
- Usage of various learning methods to develop an intelligent machine.

MODULES	Teaching Hours
Module I Artificial Intelligence: The AI Problems, The Underlying assumption, AI Technique, The Level of the model, Criteria for success. Problems, problem spaces, and search: Defining, the problem as a state space search, Production systems, Problem characteristics, Production system characteristics, Issues in the design of search programs. Heuristic search techniques: Generate-and-test, Hill climbing, Best-first search, Problem reduction.	09 Hrs
Module II Knowledge representation issues: Representations and mappings, Approaches to knowledge representation, Issues in knowledge representation, the frame problem. Using predicate logic: Representing simple facts in logic, representing instance and ISA relationships, Computable functions and predicates, Resolution, Natural Deduction Representing Knowledge Using Rules: Procedural versus Declarative knowledge, Logic programming, forward versus backward reasoning, matching, control knowledge.	08 Hrs
Module III Well posed learning problems, Designing a Learning system, Perspective and Issues in Machine Learning. Concept Learning: Concept learning task, Concept learning as search, Find-S algorithm, Version space, Candidate Elimination algorithm, Inductive Bias.	08 Hrs

Module – IV	
Decision Tree Learning: Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree learning algorithm, hypothesis space searching decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning. Artificial Neural Networks: Introduction, Neural Network representation, Appropriate problems, Perceptrons, Multilayer networks and the Back propagation algorithm.	09 Hrs
Module V Instance Based Learning: Introduction, k-nearest neighbour learning, locally weighted regression, radial basis function, cased-based reasoning. Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept learning, ML and LS error hypothesis, ML for predicting probabilities, MDL principle, Naive Bayes classifier, Bayesian belief networks, EM algorithm.	08 Hrs

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

TEXT BOOKS:

- 1. Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill, 3rd Edition 2008
- 2. Tom M. Mitchell, "*Machine Learning*", Indian Edition Paperback 2017, McGraw Hill Education.

REFERENCES:

- 1. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd.
- 2. George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex Problem Solving", Pearson Education/ PHI.
- 3. Trevor *"The Elements of Statistical Learning"*, 2ndedition, 2017, Springer series in statistics. Hastie, Robert Tibshirani, Jerome Friedman
- 4. Ethem Alpaydın, "Introduction to machine learning", Third Edition, PHI Learning Pvt. Ltd. 2015

Course outcomes:

Course	CO#	Course Outcome (CO)
Code		
	CO1	Discuss artificial intelligence techniques, problem and heuristic search algorithm
21CS63	CO2	Apply knowledge representation techniques and predicate Logic rules to solve reasoning programs.
210303	CO3	Identify the problems for machine learning.
	CO4	Apply supervised/unsupervised learning for the given problem and Explain theory of probability and statistics related to machine learning.

	c	•	T .	1 1	1 '
Estimate target	timetion	ugino	Instance	hased	learning
Listiffatte target	Tunction	using	mstance	oasca	icai iiiig

COURSE TITLE: COMPILER DESIGN AND SYSTEM SOFTWARE		
Subject Code: 21CS641	Credits :3	CIE: 50
Number of Lecture Hours/Week (L:T:P)	3:0:0 Hrs	SEE: 50
Total Number of Lecture Hours	42	SEE Hours: 03

Prerequisite: Finite Automata and Formal Languages.

Course Objectives:

CO₅

- Understand the Process involved in constructing compilers.
- Understand various types of parsers, intermediate code generation, Target code generation, Optimization of target code.

generation, Optimization of target code.	
Modules	Teaching Hours
Module I	
Introduction : Language Processors, The Structure of a Compiler, The Science of	
Building a Compiler, Applications of Compiler Technology.	
Simple Syntax directed Translator: Syntax Definition, Syntax Directed	
Translation, A translator for simple Expressions, Symbol Tables, Intermediate code	
generation.	00.11
Lexical Analysis: the Role of Lexical Analyzer, Input buffering, specification of	08 Hrs
tokens, reorganization of tokens, the lexical analyzer generator Lex.	
Module II	
Syntax Analysis: Introduction to Recursive-Descent, Top-Down parsing, Bottom-	
Up parsing, LL(1), Shift/Reduce, Operator Precedence, LR(0), SLR(1), LR(1),	
SLAR(1) and LALR(1) parsers, Parser generators-Yacc.	08 Hrs
Module III	
Syntax Directed Translation: Syntax directed definitions, Evaluation orders for	
SDDs, Applications of syntax directed translation, Syntax directed Translations	
schemes.	
Intermediate code generation: Variants of syntax trees, three address code, pipes	
and declarations, translations of expression, Type checking, Control flow,	09 Hrs
Back patching, Switch statements, Intermediate code for processors.	
Module IV	
Code Generation: Issues in the design of code generator, The target language,	
Address in the target code, Basic blocks and flow graphs, Optimization of basic	
blocks, A simple code generator, Peephole optimization, register allocation and	08 Hrs
assignment, Instructions selection by tree rewriting, Optimal code generation for	
expressions.	
Module V	
Assemblers: Basic Assembler Functions, Machine-Dependent Assembler Features,	
Machine-Independent Assembler Features, Assembler Design Options,	09 Hrs
Loaders and Linkers: Basic Loader Functions, Machine- Dependent Loaders	0, 1115
Features, Machine-Independent Leader Features, Loader Design Option.	
Question paper pattern:	

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text book:

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman: Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2007.
- 2. Leland L. Beck, D.Manjula : System Software "An Introduction to System Programming", 3rd Edition 2008

Reference Books:

- 1. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997
- 2. Andrew W Apple: Modern Compiler Implementation in C, Cambridge University Press, 1997
- 3. Charles N. Fischer, Richard J. leBlanc, Jr.: Crafting a Compiler with C, Pearson, 1991.

Course outcomes:

-	or competion of the course, the student will have the ubility to.		
Course Code	CO#	Course Outcome (CO)	
	CO1	Describe the Science of Building a Compiler, Specification and	
		recognition of Tokens using Lexical Analyzer tool – Lex.	
	CO ₂	Design and an analysis of Top-Down, Bottom-up, LR, LALR parsers	
21CS641		and usage of Yacc tool to build parsers.	
	CO3	Understanding SDD, SDT schemes and describe techniques for intermediate code generation.	
	CO4	Demonstrate techniques for simple and optimal machine code generators.	
	CO5	Understanding basic functions of assemblers, Loaders and Linkers.	

Course Title: DESIGN OF IOT SYSTEM		
Subject Code: 21CS642	Credits :03	CIE: 50
Number of Lecture Hours/Week(L:T:P)	3:0:0 Hrs	SEE: 50
Total Number of Lecture Hours 42 Hrs SEE Hours: 03		

Prerequisites: Microprocessors and Microcontrollers

Course Objectives:

- Understand basics of embedded systems and their design concepts
- Introduce IoT technology and its communication mechanisms
- Understand programming IoT development boards like Arduino and Raspberry pi

Acquire the data with sensors and perform data analysis
 MODULES

Acquire the data with sensors and periodic data analysis	1
MODULES	Teaching Hours
Module I	
Introduction to Embedded Systems, Processor Embedded into a System, Embedded Hardware Units and Devices in a System, Embedded Software in a System Examples of Embedded Systems, Embedded System-on-chip (So) and Use of VLSI Circuit Design Technology, Complex Systems Design and Processors, Design Process in Embedded System, Formalization of System Design, Design Process and Design Examples, Classification of Embedded Systems, Skills required for an Embedded system designer.	
Module II	
IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT, IoT Challenges, IoT Network Architecture and Design, Drivers Behind new Network Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT Functional Stack, IoT Data Management and Compute Stack.	08 Hrs
Module III	
Smart Objects: The "Things" inIoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies: IEEE802.15.4, IEE802.15.4g, IEE802.15.4e and 19012a, IP as the IoT Network Layer, The Business Case for IP, The need for Optimization, Optimizing IP from 6LowPAN to 7Lo. Application Layer Protocols: Generic Web based protocols, COAP, MQTT protocol.	08 Hrs
Module IV Data and Analytic s for IoT, An Introduction to Data Analytics for IoT, Machine	
Learning, Big Data Analytic Tools and Technology, Edge Streaming Analytic, Network Analytics, Securing IoT. Introduction to Arduino, Arduino UNO, Installing the Software, Fundamentals of Arduino Programming.	08 Hrs
Module V	
Raspberry Pi: Introduction to Raspberry Pi, About the Raspberry Pi Board: Hardware Layout, Operating Systems on Raspberry Pi, Configuring Raspberry Pi, Programming	08 Hrs

Raspberry Pi with Python, Wireless Temperature Monitoring System Using Pi, DS18B20 Temperature Sensor, Storing data into remote data server.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Rajkamal, "Embedded System Architecture, Programming and Design", second edition Tata McGraw- Hill publishing company limited.
- 2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, Pearson.
- 3. Srinivasa K G, "Internet of Things", CENGAGE LeaningIndia,2017
- 4. Internet Of Things A hands on Approach, Arashdeep Bhaga, Vijay Madiseeti

Reference Books:

- 1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (AHands-on-Approach)", 1st Edition, VPT, 2014.
- 2. RajKamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017.

Course outcomes:

Course Code	CO#	Course Outcome (CO)
3345	CO1	Understanding embedded system and its classification.
	CO2	Illustrate the impact and challenges posed by IoT networks leading to new architectural models.
21CS642	CO3	Deployment of smart objects and the technologies to connect them to network and its protocols for efficient network communication.
	CO4	Describe the need for Data analytics and Security in IoT. Understand Arduino board and programming and developing simple projects using Arduino UNO board.
	CO5	Understand Raspberry pi board and programming and develop simple projects using Raspberry pi and sensors.

COURSE TITLE: CRYPTOGRAPHY	AND INFORMATION SECURITY	<i>T</i>
Subject Code: 21CS643	Credits :03	CIE: 50
Number of Lecture Hours/Week (L:T:P)	3:0:0 Hrs	SEE: 50
Total Number of Lecture Hours	42 Hrs	SEE Hours: 03
Prerequisites: Mathematics.		
Course Objectives:		
 To Gain knowledge of secure network 	ork architecture	
 Explain the mathematics and theory be 	chind different cryptographic algorithms.	
MODU	ULES	Teaching Hours
Module	- I	
Introduction: Security goals, Attacks,	Services and Mechanism, Technique	ues.
Mathematics of Cryptography: Integer	arithmetic, Modular arithmetic, Lin	near
congruence.		09 Hrs
Traditional Symmetric Key Ciphers: Transposition Ciphers, Stream and Block	Introduction, Substitution Ciph ck Ciphers	ers,

Module – III

Module - II

Mathematics of Cryptography: Algebraic structures, GF(2ⁿ) Fields. Introduction to modern Symmetric-Key Ciphers: Modern Block Ciphers, Modern Stream Ciphers.

Data Encryption Standard(DES):Introduction, DES Structure, DES Analysis,

Advanced Encryption Standard: Introduction, Transformations, Key Expansion, Ciphers, Examples, Analysis of AES. Encipherment Using Modern Symmetric-Key Ciphers: Use of Modern Block Ciphers, Use of Stream Ciphers, Other issues. Mathematics of Asymmetric key Cryptography: Primes, Primality Testing, Factorization, Chinese Remainder Theorem, Quadratic Congruence, Exponentiation and Logarithm

Module - IV

Asymmetric-Key Cryptography: Introduction, RSA Cryptosystem, Rabin Cryptosystem, Elliptic Curve Cryptosystem. Message Integrity and Message Authentication: Message Integrity, Random Oracle Model, Message Authentication. Cryptographic Hash Functions: Introduction, SHA-512, Whirlpool

Module – V

Digital Signature: Comparison, Process, Services, Attacks on Digital Signature, Digital Signature Schemes, Variations and Applications. **Entity Authentication:** Introduction, Passwords, Challenge-Response, Zero-

08 Hrs

08 Hrs

09 Hrs

08 Hrs

Knowledge, Biometrics. **Key Management:** Symmetric-Key distribution, Kerberos, Symmetric-Key Agreement, Public-Key Distribution

Question paper pattern:

Multiple DES, Security of DES

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

1.Forouzan, B.A.—CryptographyandNetworkSecurity||, TataMcGraw-Hill, 2007

References

- 1. William Stallings, "Cryptography and Network Security", Pearson Education, 2006
- 2. Atul Kahate —Cryptography and Network Security, Tata McGraw-Hill, 2008

Course outcomes:

Course	CO#	Course Outcome (CO)	
Code			
	CO1	Describe basic concepts of Cryptography and information security	
	CO2	Apply algebraic structures to design encryption algorithms.	
		Demonstrate AES algorithms and illustrate mathematical concepts behind design of asymmetric key cryptography and encipherment algorithms	
22CS643	CO4	Discuss various algorithms for asymmetric key cryptography and message authentication	
	CO5	Explain digital signatures and entity authentication	

Course Title: Introduction to Artificial Intelligence		
Subject Code: 21CS65OE1	Credit:3	CIE: 50
Number of Lecture Hours/Week(L:T:P)	3:0:0 Hrs	SEE: 50
Total Number of Lecture Hours	42	SEE Hours: 03

Prerequisites: Nil

Course Objectives: This course will enable students to

- Identify the problems where AI is required and the different methods available
- Compare and contrast different AI techniques available.
- Know the applications of artificial Intelligence.
- Define and explain learning algorithms.

MODULES	Teaching Hours
Module I	
Introduction to Artificial Intelligence: The AI Problems, The Underlying	
assumption, AI Technique, The Level of the model, Criteria for success.	
Problems, problem spaces, and search: Defining, the problem as a state space	09Hrs
search, Production systems, Problem characteristics, Production system	
characteristics, Issues in the design of search programs	
Module II	
Heuristic search techniques: Generate-and-test, Hill climbing, Best-first	09 hours
search, Problem reduction, Mean-ends analysis.	
Knowledge representation issues: Representations and mappings,	
Approaches to knowledge representation, Issues in knowledge representation,	
the frame problem.	
Module III	
Using predicate logic: Representing simple facts in logic, representing	
instance and ISA relationships, Computable functions and predicates,	08 hours
Resolution, Natural Deduction	
Representing Knowledge Using Rules: Procedural versus Declarative	
knowledge, Logic programming, forward versus backward reasoning,	
matching, control knowledge.	
Module IV	
Learning, Expert Systems : Expert System, Knowledge representation , Expert	
System shells, Knowledge Acquisition af an expert system, application of expert	08 hours
systems, Example of expert system,	00 110 011
Learning: Rote Learning, Learning by Taking Advice, Learning in Problem Solving, Learning from Examples, Winston's Learning Program, Decision Trees	
Solving, Learning from Examples, whiston's Learning Program, Decision frees	
Module V	
Logic in Artificial Intelligence: Proposition Logic, First Order logic	
Prolog: Logic programming symbolic logic, clausal form, converting English to	001
prolog facts and rules, prolog terminology, variables and arithmetic operators,	08 hours
inference process of prolog, tracking model of execution, list structures, operations on	
list.	

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module, covering all the topics from a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text books:

1. Applications and Concepts, Techniques and Applications of Artificial Intelligence, Shirai, Yoshiaki and jun-ichi Tsujji, Published by John Wiley & Sons, Chichester, England, 1984,

Reference Books:

- 1. Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson Education 2nd Edition.
- 2. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems Prentice Hal of India.
- 3. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem Solving", Fourth Edition, Pearson Education, 2002.
- 4. Artificial Intelligence and Expert Systems Development by D W Rolston-Mc Graw hill. N.P. Padhy "Artificial Intelligence and Intelligent Systems", Oxford University Press-2015

Course outcomes:

Course	CO#	Course Outcome (CO)
Code		
	CO1	Identify the AI based problems
	CO2	Apply techniques to solve the AI problems
21CS650 E1	CO3	Define learning and explain various learning techniques
	CO4	Discuss on expert systems
	CO5	Discuss on Logic in Artificial Intelligence

Course Title: ARTIFICIAL INTELLIGENCEAND MACHINE LEARNING LAB		
Subject Code: 21CSL66	Credit :01	CIE: 50
Number of Practical Hours/Week/batch(L:T:P)	0:0:2 Hrs	SEE: 50
	SEE Hours: 03	

Prerequisites: Discrete Mathematics, Statistics, Java/Python Programming

Course Objectives:

Learn implementation and applications of Artificial Intelligence Algorithms.

Learn implementation and applications of Machine Learning Algorithms.

Understand the usage of various datasets for implementing ML Algorithms.

PROGRAMS

- 1. Write a Program to Implement Tic-Tac-Toe game using Python.
- 2. Write a Program to implement 8-Puzzle problem using Python.
- 3. Write a Program to Implement Water-Jug problem using Python.
- 4. Write a Program to Implement AO* Algorithm using Python.
- 5. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
- 6. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 7. Write a program to demonstrate the working of the decision tree basedID3 algorithm.
- 8. Use an appropriate data set for building the decision tree and apply this knowledge to classify anew sample. Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate datasets.
- 9. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API
- 10. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
- 11. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 12. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Question paper pattern: For SEE, two programs from the Exercise programs list will be asked.

Course outcomes: On completion of the course, the student will have the ability to:		
Course Code	CO #	Course Outcome (CO)
Coue		
	CO1	Understand the implementation procedures for the Artificial Intelligence algorithms.
	CO2	Design Python programs for various Learning algorithms.
21CSL66	CO3	Apply appropriate data sets to the Machine Learning algorithms.
	CO4	Perform Classification and clustering of Data using ML algorithms.
	CO5	Apply Machine Learning algorithms to solve real world problems.

Course Title: MINI - PROJECT			
Subject Code :21CSMP67	Credit: 2	CIE: 50	
Number of Practical Hours/Week(L:T:P)	0:0:2 Hrs		

Pre-requisite: Programming languages, Operating Systems

Course Objectives:

- Acquire the ability to integrate different areas of knowledge and evaluate and formulate aproblem
- Acquire skills to communicate effectively and present their ideas and collaborate to work as a team.
- Understand the procedure of documentation and presentation of Mini-project

Guidelines for Mini project:

- Mini project is to be carried out individually or by a team of two to three students
- Student has to carry out literature survey to identify and formulate the problem.
- Student has to design and develop H/W or S/W model in any domain of Computer Science.
- CIE evaluation will be done timely by a committee constituted by the department. The committee shall consist of respective guide and two faculty members.
- At the end of the semester students has to prepare and submit a project report

Course outcomes:

Course	CO#	Course Outcome (CO)
Code		
	CO1	Demonstrate skills to identify and formulate given problem
	CO2	Apply basic engineering knowledge learnt in developing system individually or in group
21CSMP67	CO3	Evaluate current research status by conducting literature survey
	CO4	Design and develop real time application
	CO5	Apply the programming skills in software development life cyclemodel for project implementation and well-organized report