

Hyderabad Karnataka Education Society's

Poojya Doddappa Appa College of Engineering

(An Autonomous Institution & Affiliated to

Visvesvaraya Technological University, Belagavi)

Aiwan E-Shahi Area KALABURAGI 585 102 Karnataka India

SCHEME AND SYLLABUS

FOR B.E.III SEMESTER AND IV SEMESTER

FOR THE ACADEMIC YEAR 2019-20

DEPARTMENT OF CIVIL ENGINEERING

About College:

Poojya Doddappa Appa College of Engineering (PDACE) is the first institution of Hyderabad Karnataka Education (HKE) Society, Kalaburagi, which was established in the year 1958. The foundation stone of this college was laid by the then Vice President of India Dr. Sarvapalli Radhakrishnan in 1958.

At present, PDA College of Engineering is offering 11 UG programs, 10 PG Programs and 12 Research centers, spreading and imparting technical education in North Karnataka Region. The college has state of the art laboratories, digitalized smart class rooms having highly qualified and experienced faculty with highest no. of Ph.D. and M. Tech degrees.

PDACE is the only Autonomous Institution in the region, which was sponsored under TEQIP I, TEQIP-II and TEQIP-III from World Bank and received grants of Rs.10.43 crores, Rs. 17.5 crores and 7 crores respectively. This is one among 12 institutions having TEQIP-I and TEQIP -II sponsorship. At present, college is selected in TEQIP-III as Mentor Institution for Bundelkhand Institute of Engineering & Technology, Jhansi.

The Vision and Mission of PDA College of Engineering are as mentioned below.

VISION

• To be an institute of excellence in technical education and research to serve the needs of the industry and society at local and global levels.

MISSION

- To provide a high-quality educational experience for students with values and ethics that enables them to become leaders in their chosen professions.
- To explore, create and develop innovations in engineering and science through research and development activities.
- To provide beneficial service to the national and multinational industries and communities through educational, technical and professional activities.

About Department of Civil Engineering

The Civil Engineering Department was established in the year 1958with an intake of 60 students. In 1994 the intake was increased to 90 and further increased to 180 in the year 2014. Presently the department runs both UG and PG (Environmental Engineering and Structural Engineering) programs with intake of 180 in UG program and 18 in each PG program. Department is recognized as Research Centre by Visvesvaraya Technological University Belagavi in the year 2002 and at present 35 research scholars are pursuing their Ph.D. and seven research scholars have been awarded with Ph D degree.

The Department has signed MoU with various industries like Medini, Sharan Technical consultancy, Canter Technologies Pvt. Ltd, Sharan Chandra Consultant, JGD Consultants, Jalavahini Management Services Pvt. Ltd. Dharwad, Shah Technical Consultants Pvt. Ltd., PP Raju & Co., Design Consortium, KRIDL, Bharath Dal and Oil Industries, Ultratech, ACC, Alstom, Karnataka State Pollution Control Board & HCC. These MoUs have helped the students in getting exposure to industrial environment and also for conducting Industry Institute Interaction events.

The Vision, Mission and Program educational objectives of Civil Engineering Department are as follows:

VISION

• To be the preeminent department for imparting technical knowledge and skills in the Civil Engineering field to meet the social, industrial, environmental and research needs at local and global levels.

MISSION

- To provide technical education to meet the challenges in the profession through a well-structured curriculum.
- To inculcate innovation and research ideas for sustainable development with ethical background.
- To impart entrepreneurial skills for serving the needs of the society through technical and professional activities.
- To create Civil Engineering professionals to serve the needs of the industry at local and global levels.

PROGRAMEDUCATIONALOBJECTIVES(PEO'S)

Program educational objectives are broad statements that describe the Career and Professional accomplishments that the program is preparing graduates to achieve. The program educational objectives of the B.E. in Civil Engineering Program at PDA College of Engineering, Kalaburagi are:

PEO1: To provide the knowledge of mathematics, science and engineering fundamentals for solving civil engineering problems.

PEO2:To enable the graduates to exhibit their technical knowledge and skills of recent practices to identify and solve civil engineering problems.

PEO3:To enable the graduates to conduct and interpret the results of laboratory/ field experiments in basic sciences, engineering sciences and civil engineering.

PEO4: To enable the graduate for pursuing higher education and lifelong learning.

PEO5:To enable the graduates to acquire communication, team work and entrepreneurial skills along with the values of professional ethics.

PROGRAM OUTCOMES

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

The Civil Engineering graduates are able to:

PSO1: Plan, Analyze and Design buildings, Water supply and Sewerage systems, Hydraulic structures and Transportation infrastructure using sustainable materials and conceptual knowledge of Geotechnical engineering.

PSO2: Conduct survey and Laboratory experiments/ field investigations and interpret the data for application to real life problems.

PSO3: Prepare detailed estimate of civil Engineering works and Execute the civil Engineering Projects with optimum resources using effective communication skills and Professional ethics

III Semester

Code No.	Course		J	Hours/We	ek			Ma	ximum	Marks
		Lectu	Tutori	Practica	Self	f- Cr	edit	CI	SEE	Tota
		re	al	1	stud	ly	S	Е		1
		TI	HEORY			•		•	•	•
18MA31	MATHEMATICS-III	2	2	0	-	3	5	0	50	100
	ENGINEERING	2	2	0	-	3	5	0	50	100
18CV32	MECHANICS									
18CV33	FLUID MECHANICS –	3	2	0	-	4	5	0	50	100
	I									
18CV34	SURVEYING – I	4		0	-	4	5	0	50	100
18CV35	BUILDING	3		0	-	3 5		0	50	100
	MATERIALS &									
	CONSTRUCTION									
		PRA	CTICA	L						
18CVL36	FM LAB	0	0	2	-	1	5	0	50	100
18CVL37	SURVEYING LAB – I	0	0	2	-	1	5	0	50	100
18CVL38	BUILDING PLANNING	2	0	2		3	5	0	50	100
	AND DRAWING									
	TOTAL	18	8	06	-	22	40	00	400	800
	Course prescribed to lateral entry									
18MAD39	(ADD MAT DIP)	03			-	00	5	0	50	100
	NCMC									

IV Semester

Code No.	Course		I	Hours/Weel	K		Max	ximum]	Marks
		Lectur	Tutori	Practica	Self-	Credit	CI	SEE	Total
		e	al	1	study	S	Е		
		Tl	HEORY				•		
18CV41	ENVIRONMENTAL	3		0	1	3	50	50	100
	ENGG– I								
18EC42	BASIC ELECTRONICS	3		0	-	3	50	50	100
18CV43	STRENGTH OF	3	2	0	-	4	50	50	100
	MATERIAL								
18CV44	ENGINEERING GEOLOGY	3		0	-	3	50	50	100
18CV45	FLUID MECHANICS – II	3	2	0		4	50	50	100
			PRAC'	TICAL					
18CVL46	ENGINEERING GEOLOGY	0	0	2	-	1	50	50	100
	LAB								
18CVL47	SOM LAB	0	0	2	-	1	50	50	100
18CVL48	ADVANCED SURVEY	1	-	2	-	2	50	50	100
	LAB								
18CV49	CIP/CIV	2			-	0	50	50	100
	TOTAL	18	04	06	1	21	50	500	1000
							0		
Course prescribed to lateral entry									
18MAD5	(ADD MAT DIP) NCMC	03			-	00	50	50	100
0									

THIRD SEMESTER (NC)

ENGINEERING MATHEMATICS – III						
Subject code	Subject code 18MA31 Credit: 04					
Hours/Week:	4 hours. (Theory)	SEE: 50 Marks				
Total hours: 42	CIE: 50 Marks	SEE: 3 hours				

Prerequisite: Students should have knowledge of Differential calculus, Integral calculus and Differential equations.

Course objectives:

To enable the students to obtain the knowledge of Engineering Mathematics in the following topics

- 1. Numerical methods to solve algebraic and Transcendental equations and Eigen values and Eigen vectors
- 2. Interpolation methods and Numerical integration
- 3. Fourier Series and Fourier transformation and its application in engineering

4. Partial Differential equations and its applications.

MODULES	Teaching Hours
Module-I	
Introduction, numerical solutions of algebraic and Transcendental	8 hours
equations, Bisection method, Newton's Raphson and Regula falsi	
methods.	
Module-II	
Finite differences (Forward and Backward differences), Interpolation,	9 hours
Newton's Forward and Backward formulae. Langrange's	
interpolation and inverse interpolation formulae. Numerical	
differentiation using Newton's forward and backward interpolation	
formulae and problems.	
Module-III	
Numerical differentiation using Newton's forward and backward	8 hours
interpolation formulae and problems.	
Numerical integration: Trapezoidal rule, Simpsons 1/3 rd and 3/8 th	
rule, Weddle's rule (all formulae and rules without proof).	
Module -IV	
Fourier series: Periodic functions, Fourier series with periods	8 hours
$(0, 2\pi), (-\pi, \pi), (0, 2l)$ and $(-l, l)$. Half range Fourier series, Practical	
harmonic analysis and problems.	
Module-V	
Applications of PDE: Derivation of one-dimensional wave and heat	9 hours
equations. Various possible solutions of wave equation, heat equation	
Laplace equation by the method of separation of variables with given	
conditions and problems.	
Course Outcomes:	

On completion of this course, students are able to:

CO	Course Objective	BL
CO1	Solve the numerical problems in algebraic, transcendental	CL1&CL2).
	equations, Eigen values and Eigen vectors. Computation of	
	interpolation polynomials and numerical integration	
CO2	Analyse discrete type system using convolution and the Z-	(CL3&CL4)
	transform	
CO3	Determine Fourier transformation for continuous time signals	(CL1&CL4)
	and systems	
CO4	Construction of Fourier series for periodic signals and Fourier	(CL2&CL3)
	series to analyse circuits	
CO5	Determine solution of wave, heat and Laplace equations	(CL2&CL4)

Text book:

Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th Edition.2007

Reference books:

- 1. Advanced Engineering Mathematics by E. Kreyszig, John Willey & sons 8th Edn.
- 2.A short course in differential equations Rainvile E.D.9th Edition.
- 3.Advanced Engineering Mathematics by R.K.Jain & S.R.K Iyengar; Narosa publishing House.
- 4.Introductory methods of numerical analysis by S.S.Sastry

I	ENGINEERING MECHANI	CCS
Subject code:	18CV32	Credit: 04
Hours/Week	3 hours+2 Tutorials.	SEE: 50 Marks
	(Theory)	
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: The objective of this Course is to provide an introductory treatment of Engineering Mechanics to all the students of engineering, with a view to prepare a good foundation for taking up advanced courses in the area in the subsequent semesters. A working knowledge of statics with emphasis on force equilibrium and free body diagrams.

Course objectives:

To enable the students to obtain the knowledge of Engineering Mechanics in the following topics

- 1) Understanding and solving the problems involving forces, loads and reactions, Moments and its applications of concurrent force system.
- 2) Solving the problems of couples and equilibrium of bodies.
- 3) To study the method of computing support reactions and friction of rigid bodies on horizontal and inclined planes.
- 4) To determine the center of gravity and moment of inertia of planar sections.
- 5) To study the rectilinear motion of the bodies, such as displacement, velocity, acceleration and force required.

Modules	Teaching
	Hours
Module I	
Introduction to Engineering Mechanics covering, force Systems, Basic	8 Hours
concepts, Particle equilibrium in 2D & 3D; Rigid Body equilibrium;	
System of Forces; Coplanar Concurrent Forces, Composition and	
resolution of force systems, Resultant force, Moment of Forces and its	
Application; law of transmissibility of forces, Varignon's theorem of	
moments. Numerical examples on above related topics.	
Module-II	
Couple system, equivalent force couple system, composition of coplanar	8 Hours
non-concurrent force system, Resultants of Force System, Equilibrium of	
System of Forces, Free body diagrams, Equations of Equilibrium of	
Coplanar Systems and conditions of equilibrium, law of superposition of	
forces. Numerical examples on above related topics	
Module-III	
Types of supports, types of loads, statically determinate and indeterminate	9 Hours
beams, support reactions for statically determinate beams, Friction, Types	
of friction, Limiting friction, Laws of Friction, Static and Dynamic	
Friction; Impending motion on horizontal and inclined planes, wedge	
friction, ladder friction. Numerical examples on above related topics.	
Module IV	
Centroid of plane figures, Centroid of simple figures from first principle,	9 Hours
centroid of composite sections; Centre of Gravity and its implications;	
locating the centroid of triangle, semicircle, quadrant of a circle and sector	

of a circle, centroid of the simple built sections & composite sections,	
Moment of inertia Definition, Moment of inertia of plane sections from	
first principles, Theorems of moment of inertia, Moment of inertia of	
standard sections and composite sections. Numerical examples on above	
related topics.	
Module-V	
Rectilinear motion of bodies, displacement, velocity & acceleration,	8 Hours
equations of motions, freely bodies, Newton's laws of motions, force	
required by the body to gain acceleration. Numerical examples on above	

Course Outcomes: On completion of this course, students are able to:

CO		BL
CO1	Explain the resultant of coplanar concurrent and non-concurrent force system and moments	
	system and moments	
CO2	Explain the couple and equilibrium of forces	C2
CO3	Application of laws of friction	C3
CO4	Determine the centre of gravity and moment of inertia of plane	C2
	figures	
CO5	Finding the displacement, velocity and acceleration of the body in rectilinear motion	СЗ

Text book:

related topics.

- 1. S.S. Bhavikatti, "Elements of civil engineering", Vikas publishing house Pvt. Ltd., New Delhi.
- 2. Jagadeesh T.R. and Jayaram, "Elements of civil engineering", Sapna Book House, Bangalore

Reference Books:

- 1. Timoshenko and Young, Engineering Mechanics", Mc Graw Book Company, New Delhi.
- 2. Ferdinand P. Beer and E. Russel Johnston Jr., "Mechanics for Engineers: Statics" Mc Graw Book Company, New Delhi.
- 3. K.L. Kumar, "Engineering Mechanics", Tata-McGraw-Hill Publishing company, New Delhi

FLUID MECHANICS-I				
Course Code	18CV33	CREDIT:03		
Lecture Hours/Week	3 hrs (Theory)	SEE: 50 Marks		
Total Hours: 42	CIE: 50 Marks	SEE:03Hours:		

Prerequisite: Mathematics- I, Mathematics- II

Course objectives:

To enable the student to acquire the knowledge in the following topics

- 1. Distinction between solid, fluid, liquid and gas. Classify the fluids and measurements of pressure by various types of manometers.
- 2. Hydrostatic forces on vertical, inclined and curved surfaces.
- 3. Dynamics of fluid flow.
- 4. Types of flows in pipes and head loss in pipe due to friction and bends.

5. Measurement of flow through orifice, notches and weirs.

Modules	Teaching Hours
Module I	nours
	10 h ayyas
Scope and importance of the subject. Definition of fluid, distinction	10 hours
between a solid and a fluid, distinction between a liquid and a gas, Fluid continuum. Fluid properties and classification of Fluids: Mass	
density, specific volume, specific weight, relative density, viscosity,	
Newton's Law, compressibility, vapor pressure, surface tension and	
capillarity and their units (SI systems)	
cupitatity and their units (51 systems)	
Classification of fluids – Ideal and real fluids, Newtonian and Non-Newtonian fluids compressible and incompressible fluids. Problems	
on above fluid properties. Pressure at a point in a static fluid –	
Pascal's law – Hydrostatic Pressure law, Atmospheric pressure,	
Absolute, gauge, and vacuum pressure, Simple U-tube manometer, U-	
tube Differential manometers, inverted U-tube monometer.	
Module II	
Hydrostatics: Hydrostatics Forces on vertical & inclined plane	8 hours
surfaces, (rectangular, square, triangular, trapezoidal, circular plane	
surfaces) Hydrostatic forces on curved surfaces and center of	
pressure, pressure diagrams. Applications of total pressure and center	
of pressure on Dams, Roller gates, Tainter gates, sector gates, Sluice	
gates and pressure diagrams.	
Module III	0 1
Dynamics of Fluid Flow : Euler's equation of motion in one dimension – Integration of Euler's equation, Bernoulli's equation,	8 hours
Limitations and modifications of Bernoulli's equation, Applications	
of Bernoulli's equation Pitot tubes, Venturi meter – Momentum	
equation & its application on pipe bend.	
Module IV	
Flow Through pipes: Types of flows in pipes, Reynolds's experiments – Reynold's number Laminar & turbulent flows, fluid	8 hours

friction in pipes - Head loss due to friction (Darcy Welsbach	ı
equation) Friction factors for commercial pipes, Minor losses in pipes	ı
– pipes in series, equivalent pipe and pipes in parallel.	
Module V	
Flow measurements: Flow through a small orifice. Hydraulic	8 hours
coefficients and experimental methods of determination. Flow	ı
through large rectangular orifices, submerged orifices. Flow through	ı
mouth pieces, external cylindrical mouth piece, hydraulic co-efficient,	ı
flow through internal or re-entrant Borda's mouth piece.	ı
Classification of Notches & weirs, Flow over rectangular Notch,	ı
Triangular Notch or weir Trapezoidal Notch, stepped Notch, Velocity	ı
of approach, Francis formula Flow Cipolletti weir or Notch, Broad	ı
crested, ogee weir submerged weir effect on discharge over a	ı
rectangular weir due to error in the measurement of head.	
	ı

Question paper pattern:

Two questions to be set from each Module by intermixing (in total 10). Students have to answer any five full questions by selecting one question from each module.

Text books:

- 1. Modi & Seth, Hydraulics & Fluid Mechanics standard book publishers, New Delhi.
- 2. Arora, K.R., 'Fluid Mechanics & Hydraulics' Standard book publishers, New Delhi.
- 3. Bansal, R.K., 'Fluid Mechanics; & Hydraulics' Laxmi Publication, New Delhi.
- 4. Jain, A.K. 'Fluid Mechanics' Khanna publishers, New Delhi

Reference Books: Streeter – Mc Graw Hill Book Company.

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course Code	CO#	Course Outcome (CO)	Blooms Level
	CO1	Identify basic properties of Fluids.	C1
	CO2	Analyze fluid pressure forces and design sluice gates, roller gates etc.	C4
	CO3	Apply Bernoulli's equation & its application on fluid flow problems.	C3
	CO4	Analyze fluid flow through pipes.	C2
	CO5	Apply fluid flow phenomenon in flow measurement through orifices, mouth piece, notches and weirs.	C3

SURVEYING – I				
Course Code	18CV34	CREDIT:04		
Number of Lecture Hours/Week	4 hrs (Theory)	SEE: 50 Marks		
Total Number of Lecture Hours: 52	CIE: 50 Marks	SEE Hours: 03		

Prerequisite: none

Course objectives:

To enable the student to acquire the knowledge in the following topics

- 1. Introduction to Surveying and measurement of horizontal distances.
- 2. Chain surveying and compass surveying.
- 3. Principles of leveling.
- 4. Different types of leveling and contouring.

Modules	Teaching Hours
Module I	nours
Module I Introduction: Definition of Surveying, Classification of Surveys, Uses of Surveying, Units of Measurements, Map & Classification, Survey of India topographical Maps and their numbering. Basic principles of Surveying, Errors, Classification, Precision and accuracy. Measurement of horizontal distances: Chain and types, Tape and types, EDM devices, Ranging of lines Direct and Indirect, Measurement of distances over sloping grounds, Chain and Tape corrections - Numerical problems.	8 hours
Module II	
Chain Surveying: Accessories required, Selection of stations and lines, Offsets and types, setting out of right angles, working principle and use of optical square, prism square, cross staff., Linear methods of setting out right angles, booking of chain survey work, Field book, entries, conventional symbols, Obstacles in chain survey, Numerical problems, Errors in chain survey and precautions to be taken. Compass Surveying-I: Meridians and bearings, Principle, working and use of — Prismatic compass, Surveyor's compass, Magnetic bearing, true bearings, WCB and Reduced bearing., Dip and Declination	8 hours
Module III Compass Surveying-II: Accessories required for compass surveying, Traverse - closed and open traverse, Computation of bearings of legs of closed traverse given the bearing of one of the legs, Computation of included angles given the bearings of legs of a closed traverse. Local attraction, determination and corrections. Bowditch's graphical method of adjustment of closed traverse, Bowditch rule & transit rule, Omitted measurements (only length & corresponding bearing of one line).	8 hours

Module IV	-
Levelling-I: Principles and basic definitions, Fundamental axes and part of a	9 hours
dumpy level, Types of adjustments and objectives, Temporary adjustments	
of a dumpy level, Sensitiveness of bubble tube.	
Inter relationship between fundamental axes for instrument to be in	
adjustment problems on two peg methods for calibration of dumpy level	
Module V	
Levelling-ii : Curvature and refraction correction, Type of leveling, Simple	
leveling, Reciprocal leveling, Profile leveling, Cross sectioning, Fly	9 hours
leveling,	
Reduction of Levelling: Booking of levels, Rise and fall method and Height	
of instrument method, comparison and arithmetic checks, Fly back leveling.,	
Errors and precautions.	
Contouring: Contours and their characteristics, Methods of contouring,	
direct and indirect methods, Interpolation techniques, uses of contours	
Numerical problems on determining intervisibility, Grade contours and uses.	

Question paper pattern:

Two questions to be set from each Module by intermixing (in total 10). Students have to answer any five full questions by selecting one question from each module.

Text books:

- 1. B.C. Punmia 'Surveying' Vol-1 -, Laxmi Publications, New Delhi.
- 2. A.M. Chandra 'Plane Surveying' Vol-1-, New age International ® Ltd.
- **3.**ALAK 'Plane Surveying' –, S. Chand and Company Ltd., New Delhi.
- 4. Kanetkar T P and S V kulkarni, Surveying and leveling volume 2, Pune Vidyarthi Griha Prakashan, 1988

Reference Books:

- 1. Milton O. Schimidt Wong, Fundamentals of Surveying -, Thomson Learning.
- 2. S.K. Roy, Fundamentals of Surveying Prentice Hall of India.
- 3. S.K. Duggal, Surveying Vol. I, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 4. Survey of India Publication on maps.

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course Code	CO#	Course Outcome (CO)	BL
	CO1	Possess a sound knowledge of principles in measurements and methodologies.	C2
	CO2	Define principles of basic surveying instrument compass and its concept solve problems in linear measurements, surveying applications.	C3
	CO3	Develop solutions for problems on applications of compass surveying.	C3
	CO4	Define principles of leveling instrument. Understand calibrating leveling instrument.	C2
	CO5	Define different methods of leveling and contouring Solve problems on field applications in leveling	C2

BUILDING MATERIALS AND CONSTRUCTION				
Course Code 18CV35 CREDIT:03 CIE: 50				
Number of Lecture Hours/Week	3 hrs (Theory)	SEE: 50		
Total Number of Lecture Hours	42 Hours	SEE Hours: 03		

Prerequisite: None

Course objectives:

To enable the student to acquire the knowledge in the following topics

- 1. Properties and preservation for stone and timber.
- 2. Properties of bricks and bonds in brickwork
- 3. Types of stone masonry, materials and methods of damp proofing courses.
- 4. Types of stairs and design of doglegged stair.
- 5. Roof, insulating materials and types of plastering.
- 6. Types of doors, windows, flooring and paints,

Modules	Teaching
	Hours
Module I	
Building Stones: Common building stones and their uses, quarrying of	8 hours
stones, qualities of good building stones, deterioration of stones,	
Preservation of stones, dressing of stones, tests on building stones.	
Timber: Important varieties and uses, defects in timber, tests for good	
timber, seasoning of timber, ply wood and its uses.	
Module-II	
Bricks: Classification and composition of bricks, qualities of good bricks,	7 hours
tests on bricks.	
Brick Masonry: Definition of terms used in masonry, bonds in brick work,	
English bond, Flemish bond, Reinforced brick work, Sand lime brick	
Module III	
Stone Masonry: Rubble Masonry, Coursed and Un-coursed rubble	5 hours
masonry, Ashlar masonry, Shoring, Under Pinning and Scaffolding.	
	2.1
Damp Proof Course: Materials used for damp proof course, D.P.C	3 hours
Treatment in building methods of treatment to foundations, treatment to	
floors, walls and slabs, Concrete paver blocks.	
M. J. I. IV	
Module IV	2 1
Stairs: Types (classifications) and technical terms in stairs, requirements of	3 hours
a good stair, geometric design of R.C.C dog legged and open well stairs	
(Plan and Sectional elevation of stairs).	
Roofs& Miscellaneous Materials: Sloped roof (R.C.C and tile roof),	2 h aves
Requirements of good roofs, Adhesives, Asbestos, Thermopolis, Fibers,	3 hours
Heat insulating materials, Sound insulating materials, Geosynthetics	

Plastering: Purpose of plastering, materials of plastering, lime mortar,	
cement mortar, masonry mortar, methods of plastering, Stucco plastering,	
Lath plastering.	3 hours
Module V	1
Doors: Types, Paneled doors, glazed doors, flush doors.	3 hours
Windows: Types, Paneled Window, glazed Window.	
Floors: Types of flooring (materials and methods of laying), Granolithic,	3 hours
mosaic, ceramic, marble and polished granite, Linoleum	
Painting: Purpose of painting, types of paints, application of paints to new	
and old surfaces, distemper, plastic emulsion, enamel, polishing of wood	4 hours
surface.	

Question paper pattern:

Two questions to be set from each Module by intermixing (in total 10). Students have to answer any five full questions by selecting one question from each module.

Text books:

- 1. B.C. PUNMIA "Building Construction", Lakshmi Publications, New Delhi.
- 2. SUSHIL KUMAR "Building Construction", Standard Publication and Distributors, New Delhi.
- 3. S.C. RANGWALA" Building Construction", Charter Publishing House, Anand, India
- 4. Sushil Kumar "Engineering Materials", Standard Publication and Distributors, New Delhi.
- 5. S. C. Rangwala" Engineering Materials", Charter Publishing House, Anand, India.
- 6. P. G. Verghese" A Text Book of Building Materials", prentice-Hall of India Pvt Ltd, Publication.
- 7. R. K. rajpal" Engineering Materials", S.Chand and Company, New Delhi.

Reference Books:

- 1. Mohan rai and M. P. Jai Singh "Advanced Building Materials and Construction" CBRI Publication Roorkee.
- 2. Parbin Sing "Civil Engineering Materials", S. K. Kataria and Sons Publications, New Delhi.
- 3. K. S. Manjunath "Materials of Construction", Sanguine Technical Publishers, Bangalore.

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course	CO	Course Outcome (CO)	BL
Code	#		
	CO1	Understand the properties of Stone sand Timber materials.	C2
	CO2	Explain the ingredients of brick, different tests on brick and brick masonry.	C2
	CO3 Compare different types of stone masonry and explain different types of DPC.		C3
	CO4	Design the R.C.C dog legged stair case and explain roofing materials, miscellaneous materials.	C4
	CO5	Explain doors, windows, floors, and paints.	C2

FLUID MECHANICS LAB			
Course Code	18CVL36	CREDIT: 01	
Number of Lecture Hours/Week	2 hrs (Practical)	CIE: 50 Marks	
Total hours: 28	CIE: 50 Marks	SEE: 03 Hours	

Prerequisite: none

Course objectives:

To enable the student to acquire the knowledge in the following topics

- 1. Calibration of various notches.
- 2. Calibration of plug sluice. Broad crested ad ogee weir.
- 3. Determination of constants of Parshall minor flume, losses through pipes and friction through pipes.
- 4. Determination of hydraulic coefficients of small circular orifice and external cylindrical mouth piece.
- 5. Determination of coefficient of discharge of venturi meter study of performance of centrifugal pump.

Experiments	Teaching
•	Hours
1. Calibration of rectangular notch	2hours
2. Calibration of triangular notch	2hours
3. Calibration of Cipolletti notch	2hours
4. Calibration of broad crested weir	2hours
5. Calibration of ogee weir	2hours
6. Calibration of plug sluice	2hours
7. Determination of constants of Parshall flume	2hours
8. Determination of minor losses through pipes	2hours
9. Determination of hydraulic coefficient of small circular orifice.	2hours
10. Determination of friction loss through pipes	2hours
11. Determination of hydraulic coefficients of external cylindrical	2hours
mouth piece.	
12. Determination coefficient of discharge of venturi meter.	2hours
13. Study of performance of centrifugal pump	2hours
14. Study of performance of Francis turbine	2hours
or	
15. Study of performance of Pelton wheel turbine	2hours
16. Demonstrate of open channel flow	2hours

Question paper pattern:

Conduct any one experiment by picking up student and he has to prepare writeup and conduct experiment.

Text books:

Papers from the international journals (Scopus index and web of science).

Reference Books:

Papers from the international journals (Scopus index and web of science). **E books and online course materials:**

www.civilenggebooks.com

Course outcomes:

Course	CO#	Course Outcome (CO)	Blooms
Code		, ,	Level
	CO1	Demonstrate the concepts of SOM theory course through series of experiments.	C2
	CO2	Share the responsibilities in small teams of 4-5 members for conducting the experiments.	C3
	CO3	Perform the experiments and determine Calibration of notches, rectangular, triangular, Cipolletti notch, plug sluice, broad crested and ogee weir, determination of Parshall minor flume, losses through pipes cylindrical mouthpiece, centrifugal pump, small circular orifice, friction loss through pipes, external cylindrical mouth piece, venturi meter, study on centrifugal pump, francis turbine, Pelton wheel turbine, demonstrate of open channel flow parameters.	C3
	CO4	Analyse the data and interpret the results.	C4
	CO5	Prepare a well-organized laboratory report.	C3

	SURVEYING LAB-1	
Course Code	18CVL37	CREDIT: 01
Number of Lecture Hours/Week	2 hrs (Practical)	SEE: 50 Marks
Total Number of Lecture Hours: 18	CIE: 50 Marks	SEE: 03 Hours

Prerequisite: none

Course objectives: To enable the student to acquire the knowledge in the following topics

Experiments	Teaching Hours
1.a) To Measure distance between two points by direct Ranging	02Hours
1.b) To Set out perpendiculars at various points on a given line by linear methods.	02 Hours
2. Setting out of rectangle, pentagon and hexagon by compass and Chain	02 Hours
3. Determination of distance between two inaccessible points using compass and accessories.	02 Hours
4.Closed traverse of a small area using chain and compass &adjustment of closing error by Bowditch's rule	02 Hours
5. Determination of reduced level of points using dumpy level/auto level (simple leveling)	02 Hours
6. Determination of reduced level of points using dumpy level/auto level (differential leveling and inverted leveling)	02Hours
7. To determine the difference in elevation between two points using Reciprocal leveling and to determine the collimation error.	02 Hours
8. To conduct profile leveling, cross sectioning and block leveling. Plotting profile and cross sectioning in excel. Block contour on graph paper to scale.	02 Hours
9) To Determine the difference in elevation between two points by conducting Fly Levelling Also Carryout Fly Back Levelling	02 Hours

calculate the RL of Points by RISE and FALL method

Question paper pattern:

Conduct any one experiment by picking up student and he has to prepare writeupand conduct experiment.

Text books:

- 1. B C PUNMIA, Surveying and Levelling, volume-i, JAIN PUBLICATION, New Delhi
- 2. Dr K R Arora, Plane surveying, Standard Book House, New Delhi

Reference Books:

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course Code	CO#	Course Outcome (CO)	Blooms Level
	CO1	Demonstrate the concepts of Survey theory course through series of experiments.	C2
	CO2	Share the responsibilities in small teams of 4-5 members for conducting the experiments.	С3
	CO3	Perform the various experiments	C3
	CO4	Analyse the data and interpret the results.	C4
	CO5	Prepare a well-organized laboratory report.	C3

BUILDING PLANNING AND DRAWING		
Course Code	18CVL38	CREDIT:03
Number of Lecture Hours/Week	2 Hours (Lectures) 2 Hours(Practical)	SEE: 50 Marks
Total Hours: 28 Hours	CIE: 50 Marks	SEE 03 Hours

Prerequisite: none

Course objectives:

To enable the student to acquire the knowledge in the following topics

	Teaching Hours
PART-I 1. To prepare working drawing of component of buildings i) Stepped wall footing and isolated RCC column footing, ii) Fully paneled and flush doors, iii) Half panelled and half-glazed window.	3hours
 Functional design of building (Residential, Public and Industrial), positioning of various components of buildings, orientation of buildings, building standards, bye laws, set back distances and calculation of carpet area, plinth area and floor area ratio. 	4hours
3. Functional design of building using inter connectivity diagrams (bubble diagram), development of line diagram only for following building:	6hours
i) Primary health center, ii) Primary school building iii) Residential building	
ii) For a given single line diagram, preparation of water supply, Sanitary and electrical layouts. Rain water harvesting elements	1hours
Solid edge : preparation of building plan, elevation and typical sections by solid edge of single storied two bed room residential building	mours
PART-II Development of plan, elevation, section and schedule of openings from the given line diagram of residential buildings,	4 hours
i) Two-bedroom Residential building, ii) Two storied building.	10hours

Question paper pattern:

.

Reference Books:

- 1 Shah M.H and Kale C.M **"Building Drawing"**, , Tata Mc Graw Hill Publishing co. Ltd., New Delhi.
- 2 Gurucharan Singh "Building Construction", , Standard Publishers

& distributors, New Delhi.

3 National Building Code, BIS, New Delhi. E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course Code	CO#	Course Outcome (CO)	Blooms Level
	CO1	Understand the concepts of Principles of Planning and theory course through series of Drawings.	C2
	CO2	Share the responsibilities in small teams of 4-5 members for planning and drawing.	C3
	CO3	Perform the Drawings of Residential Building	C3
	CO4	Suitable dimensions are data and interprete the Drawings.	C4
	CO5	Prepare set of Drawings relevant to the Course.	C3

FOURTH SEMESTER

	ENVIRONMENTAL ENGG-	[
Subject code	18CV41	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: None

Course objectives: To enable the student to acquire the knowledge in the following topics:

- 1. Fundamentals of water supply engineering.
- 2. Various components of water supply.
- 3. Quantitative and qualitative assessment of water requirement.
- 4. Solve water unit design problems using hydraulic principles and methods.
- 5. Operation of water treatment units, advance treatment methods.

or operation of water treatment sints, as varies treatment inclineds.	5. Operation of water treatment units, advance treatment methods.		
Modules	Teaching Hours		
MODULE-I			
Introduction: Human activities and environmental pollution. Requirement of Water for various beneficial uses. Need for protected water supply. Demand of water: Types of water demands- domestic demand in detail,	02 Hours.		
institutional and commercial, public uses, fire demand. Per capita	05 110415		
consumption –factors affecting per capita demand, population forecasting,			
different methods with merits and demerits- variations in demand of water.			
Fire demand – estimation by Kuching's formula, Freeman formula and			
national board of fire underwriters' formula, peak factors, design periods and			
factors governing the design periods.			
MODULE-II			
Quality of water: Objectives of water quality management. Concept of safe water wholesomeness, palatability and potable. water borne diseases. Examination of water: objectives — Physical chemical and Microbiological Examinations, (IS: 3025 and IS: 1622) using analytical and instrumental techniques. Drinking water standards BIS and WHO standards. Health significance of Fluoride, Nitrates and heavy metals like Mercury and Cadmium. Sampling of water for examination. Sources: Surface and subsurface sources — suitability with regard to quality and quantity.	05 Hours 05 Hours.		
MODULE-III			
Collection and conveyance of water: Intake structures – different types of intakes; factor of selection and location of intakes. Pumps- Necessity, types – power of pumps; factors for the selection of a pump. Pipes – Design of the economical diameter for the rising main; Nomograms – use; Pipe appurtenances.	05 Hours.		
Water treatment : Objectives – Treatment of flow-chart. Aeration- Principles, types of aerators.	02 Hours		
Sedimentation: Theory of settling tanks, types, design. Aided sedimentation –			

with coagulants, dosages, chemical feeding, flash mixing, and flocculator-design of all units.			03 Hours.
8	MODULE-IV		
Filtration : Mechanism – theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning and their design – excluding under drainage system – back washing filters. Disinfections : Theory of disinfections, methods of disinfections, Chlorination,		neir	03Hours.
chlorine	e demand, residual chlorine, use of bleaching powder.		
	MODULE-V		
Softenia zeolite p	ng: D efinition, methods of removal of hardness lime soda process a process.	and	03 Hours.
	ls of distribution systems: System of supply, service reservoirs a pacity determination, methods of layout of distribution.	and	04 Hours
Miscell	aneous: Pipe appurtenances, various valves, type of fire hydraring, Location of water supply pipes in buildings	nts,	02 Hours
Concepts of rain water harvesting: Importance of rain water harvesting and			
_	s of rain water harvesting.	4110	
	outcomes: On completion of the course, the student will have th	e ab	ility to:
			oms Level
CO1	Estimate the water demand for a known population considering different influencing Parameters		C3
Evaluate the quality of water with reference to physical, chemical and biological parameters from different sources.			C4
CO3 Describe different types of intake structures, pumps and design the rising main			C4
CO4 Explain the steps involved in the water treatment and design			C4
	sedimentation, filtration and disinfection units		
CO5	Describe the water softening techniques rain water harvesting		C2

Question paper pattern:

Two questions are to be set from each module.

methods and the concepts

Total five questions are to be answered by selecting minimum one question from each module

Text books:

1. S.K. Garg "Water supply Engineering" Vol 1 – Khanna Publishers

Involved in the design of water distribution systems.

2. B.C. Punmia and Ashok Jain, "Environmental Engineering" CPHEEO, "Manual on Water supply and treatment" –Ministry of Urban Development, New Delhi

Reference Books:

- 1. Water supply Engg VOL-I by S.K. Garg, Khanna publications New Delhi.
- 2. Environmental engineering by Howard. S. Peavy, Donald. Rowe and George Tchobanaglows, Mittal books, India.
- 3. Water supply engineering and waste water engineering by, Ashok kumar& Jain, B.C. Punmia, Laxmi publications (p)ltd, New Delhi
- 4. Elements of environmental engineering by Dr. K. N. Duggal, S.Chand, New Delhi.

Nptel Link: https://voutu.be/zVZ9c6EXfTA

E books and online course materials:www.civilenggbooks.com

	FLUID MECHANICS-II	
Course Code	18CV42	CREDIT:04
Number of Lecture Hours/Week	3 Hrs (Theory) 2 Hrs (Tutorial)	SEE: 50
Total Number of Lecture: 42 Hours	CIE: 50	SEE: 03Hours

Prerequisite: Fluid mechanics-I

Course objectives:

To enable the student to acquire the knowledge in the following topics

- > Classify types of flow in open channels and design most economical section.
- > Analysis of dimensions and model study y using different non-dimensional numbers.
- ➤ Impulse-momentum equation, its applications and force exerted by jet on various surfaces of vanes.
- > Types, design parameters and working principles of turbine.

> Classify and describe the pumps.

Modules		
	Hours	
Module I		
Open channel flow: Definition of open channels, classification,	10 hours	
difference between pipe flow & open channel flow, types of flow,		
geometric properties of open channels, Uniform flow in open channels,		
Chazy's and Manning's formulae, Problems on uniform flow, Most		
economical section of open channel flow, Derivation of conditions for		
most economical rectangular, triangular and trapezoidal sections.		
Problems on most economical sections. Most economical circular		
channels derivations and problems, Specific energy, definitions,		
specific energy curve, conditions for minimum specific energy and		
maximum discharge, Critical flow in rectangular channels, problems		
Hydraulic jump in rectangular channels, derivations with Froude		
numbers concept. Problems of Hydraulic Jump, Venturi flume.		
Module-II		
Dimensional analysis & model similitude: Introduction to	6 hours	
Dimensional Analysis unit & dimensions, Table of Dimensions		
Dimensional Homogeneity, Methods of Analysis, Rayleigh's &		
Buckingham's method. Problems on Rayleigh's & Buckingham's		
methods, Model Studies, Introduction, Similitude, Dimensionless		
parameters. Types of models. Froude's models theory & problems.		
Reynolds models, Problems, Scale effects.		
Module –III		
Impact of jets on vanes: Introduction to Impulse – momentum		
equation and its applications, Force exerted by a jet on a fixed target,		
Derivations. Force exerted by a jet on a moving target, Derivations.		
Force exerted by a jet on a series of curved vanes. Force exerted on a		
by a jet on hinged plate. Concept & of velocity triangles. Equation for		

work done & efficiency. Problems on above.	
Module IV	
Hydraulic turbines: Introduction, Types and classifications, Pelton Wheel, theory. Expression for work done and efficiency, design parameters. Problems on Pelton Wheel; Francis Turbine – Theory, equation for work done and efficiency, design parameters. Problems on Francis turbine, Problems on Kaplan turbine.	8 hours
Module –V	
Draft tube theory and problems. Specific speed of a turbine, Equation for the specific speed, problems, Unit quantities of a turbine, definitions, equations and problems Characteristics curves of turbine, general layout of hydroelectric plants.	10 hours
Definition of pump, difference between pump & a turbine, classification, Description & general principle of working, priming & methods. Work done & efficiencies of a centrifugal pump.	

Question paper pattern:

Two questions to be set from each Module by intermixing (in total 10). Students have to answer any five full questions by selecting one question from each module.

Text books:

- 1. MODI & SETH. "Hydraulics & Fluid Mechanics", Standard Book House, new Delhi.
- 2. BANSAL R.K. "Text Book on Fluid Mechanics & Hydraulic Machines' Laxmi publications.
- 3. K.R. Arora, 'Hydraulics & Fluid Mechanics', Standard Book House.

Reference Books:

1. Streeter – Mc Graw Hill Book Company.

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course	CO#	Course Outcome (CO)	Blooms Level
Code			
	CO1	Identify basic principles of flow	C1
		through open channels and impact of	
		jets on fluid machines.	
	CO2	Analyze the flow problems by solving	C4
		the examples of open channel flow and	
		fluid machines.	
	CO3	Organize computation design of	C4
		conveyance system in open channels	
		also design of fluid machines.	
	CO4	Analyse the efficiency of different	C2
		hydraulic machines and their	
		suitability to the desired situations.	
	CO5	Understand working, construction and	C3
		suitability of pumps to the desired	
		situations.	

	BASIC ELECTRONICS.		
Subject Code	18BE42	Cred	lit: 03
Number of Lecture Hours/Week	3 (Theory)	SEF	2: 50
Total Number of Lecture Hours: 42	CIE: 50	SEE Ho	ours: 03
			Teaching Hours
their property. condusted semiconductors intrinsic P-N junction: Characteria	Module-1 ity: insulator, conductor, semiconduction through semiconductor, , p and n type. stic of PN junction Forward and Re Diode, rectifiers, filter, zener regula	types of verse bias,	08 Hours
Module-2 Transistor types: Input output characteristics, dc load-line and biasing (voltage divider biasing), CB, CC, CE configuration, transistor as an amplifier, transistor as a switch, concept of feedback, oscillator, Hartley, crystal oscillator, RC phase shift oscillator.			09 Hours
Ideal op-amp character	Module-3 astics, application of op-amp, inventigation, difference amplifier, Difference		08 Hours
Module-4 Number system: Number representation, number conversion decimal to binary, binary to decimal and binary to hexadecimal, hexadecimal to binary, Sign magnitude representation, representation of negative numbers. Binary addition and subtraction using 2s complement. Logics gates; Basic gates, universal and Ex-OR, Ex-NOR gates.			08 Hours
Introduction to micropro	Module-5 ocessor, microprocessor organization /O Buses, Introduction to 8085, arssing modes.	n, memory	09 Hours
• The question paper wil			

- The question paper will have ten questions.
- Each full question consists of 20 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module, there will be five modules.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Course objectives:

After studying this course, students will be able to:

Text books:

1. Electronic devices and circuit theory by R L Boylestad, Louis Nashelsky 6TH

edition PHI.

- 2. Fundamentals of microprocessors and microcontrollers by B RAM.
- 3. Digital logic and computer design by M Moris Mano.

E books and online course materials:

www.civilenggebooks.com

Course Objectives:

Course	CO#	Course Outcome (CO)	
Code			
	CO1	Understand conductivity in semiconductor and application of diode	
	CO2	Understand working of transistor and its application	
	CO3	Understand working of opamp and its application	
	CO4	Perform arithmetic operations in binary form	
	CO5	Understand working of microprocessor	

STRENGTH OF MATERIALS			
Course Code	18CV43	CREDIT: 04	
Lecture Hours/Week	3 Hours (Theory) 2 Hours (Tutorial)	SEE: 50 Marks	
Total Hours:42	CIE: 50 Marks	SEE: 03 Hours	

Prerequisite: Elements of civil engg and engg mechanics

Course objectives:

To enable the student to acquire the knowledge in the following topics

- 1. To understand the behavior of materials under stress and strain.
- 2. To analyse an element subjected to compound stress to assess the various stresses in thin and thick cylinders.
- 3. To understand the concept of shear force and bending moments for beams subjected to various system.
- 4. To evaluate the bending and shear stress in beam to understand the behavior and design of columns.
- 5. Strength evaluation and design of circular shaft subjected to torsion and to evaluate the deflection of beams.

deflection of beams.	
Modules	Teaching
	Hours
Module I	
Simple stresses and strains: Introduction to various strengths of material,	
concept and definition of stress and strain, types of stresses and strains,	
Assumptions in strength of materials, stress-strain diagrams for mild	
steel, ferrous and non-ferrous materials, St Venant's Principle, Hook's Law,	
Modulus of Elasticity, Poisson's ratio, Deformation of bars of uniform cross	
section, varying cross section. Elongation due to self-weight. Compound bars,	10 hours
Temperature stresses, Elastic constants and their relationship, volumetric	
strain, application problems.	
Module II	
Compound stresses: Determination of stresses on oblique/inclined plane due	
to uniaxial, biaxial and general 2D stresses, (Analytical and Mohr's circle	
method), Determination of Principal Planes and Principal Stresses, Maximum	
Shear Stress and their plane (Analytical and Mohr's circle method)	
Thin and thick cylinders:	
Thin cylinders: Determination of Longitudinal and Circumferential/Hoop's	8 hours
stress, change in dimensions and volume	
Thick cylinders: Assumptions, Lami's equation derivation and problems,	
radial pressure and hoop stress distribution diagrams.	
Module III	
Shear force and bending moment in beams: Introduction to types of loads,	
beams and support with reaction. Definition of Shear force and bending	
moment, sign conventions. Relationship between load intensity, bending	
moment and shear force. Shear force diagram (SFD) and Bending moment	
diagram (BMD) for simply supported beams (both without overhang and with	8 hours
overhangs) and cantilever beams, beams subjected to point loads, UDL, UVL,	
Couples and their combinations.	

Module IV

Bending stresses and shear stresses in beams.

Bendinf stresses: Assumptions, Bernoulli's theory of Pure Bending, relationship between bending moment, bending stress and radius of curvature, Moment of Resistance, Section Modulus, flexural rigidity, Modulus of rupture. Bending stress diagram for rectangular, circular, 'I', 'T' and 'L' sections (simple problems)

Shear stress: Expression for transverse shear stressing beams, Shear stress diagram for rectangular, circular, 'I', 'T' and 'L' sections.

Elastic stability of columns and struts. Introduction to short and long columns. Definition of effective length, slenderness ratio, radius of gyration, buckling/critical load. Assumption and derivation of Euler's Buckling load for different end conditions. Problems and limitations of "Euler's theory. Rankine's theory, numerical problems.

8 hours

Module V

Torsion of circular shafts: Equation for theory of pure Torsion, Assumptions, Torsion equation for circular shaft, Strength and stiffness, torsional rigidity, polar modulus, strengths of solid and hollow shafts, power transmitted by solid and hollow shafts.

Deflection of beams: Definition of stiffness, elastic curve, deflection in simple bending, relation between curvature, slope and deflection. Double Integration method for cantilever and simply supported beams for point load, UDL, UVL and couple, Macaulay's method, numerical problems.

8 hours

Question paper pattern:

Two questions to be set from each Module by intermixing (in total 10). Students have to answer any five full questions by selecting one question from each module.

Text books:

- 1. S.S.Bhavikatti "Strength of Materials", New age Publications
- 2. B.S. Basavarajaiah, P Mahadevappa "Strength of Materials" in SI Units, University Press (India) Pvt. Ltd., 3rd Edition (2010)
- 3. Shesha Prakash MN and Suresh GS, Mechanics of Materials, Prentice Hall, New Delhi, 2011
- 4. R.Subramanian "Strength of Materials" Oxford University Press. 3rdEdition (2016)

Reference Books:

- 1. D.H. Young, S.P. Timoshenko "Elements of Strength of Materials" East West Press Pvt. Ltd., 5th Edition (Reprint 2014)
- **2.** S.S. Rattan "Strength of Materials" McGraw Hill Education (India)Pvt. Ltd., 2nd Edition (Sixth reprint 2013).

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

CO	Course Outcome (CO)	Blooms Level
CO1	To Understand about simple stress and strains with their relationship. determine the deformation of composite bars due to loads and temperature stress.	C2

CO2	To explain about the compound (complex) stress for 2D	C2	
	elements both by analytical and graphical methods. To		
	determine principal stresses and their planes, evaluate		
	different stresses acting on thin and thick cylinder.		
CO3	To analyze and draw SFD and BMD for beams with various	C4	
	end conditions and loads.		
CO4	To estimate and draw the bending stress, and shear stress	C6	
	diagram in the beams of various cross sections. to determine		
	bulking loads for columns with different end conditions.		
CO5	To determine the torsion and design the shafts to evaluate to	C5	
	slope and deflection of beams subjected to various loads by		
	double integration and Maculay's method.		

ENGINEERING GEOLOGY			
Course Code	18CV44	CREDIT:03	
Number of Lecture Hours/Week	3 Hrs (Theory)	SEE: 50	
Total Number of Lecture Hours : 42	CIE: 50	SEE: 03 Hours	

Prerequisite: none

Course objectives:

To enable the student to acquire the knowledge in the following topics

- ➤ The scope of geology in terms of its academic significance.
- > Types of geological agents, and details of weathering of rocks.
- > Importance of rock forming minerals, advantage of the physical properties in identification.
- > Salient features of rocks.
- ➤ Common types of structures such as folds, faults, joints and unconformities.
- > Relation between geology and geophysics.
- ➤ Source of water to meet the increasing demand of water.

Modules	Teaching	
	Hours	
Module I		
Introduction : Definition and Branches of geology, Internal structure	8 hours	
of the Earth and its composition. Importance of geology in civil		
engineering.		
Mineralogy : Definition of the mineral, deference between ore forming		
and rock forming minerals, Important physical properties of the		
minerals, such as Color, Streak, Lustre, Diaphaneity, Hardness,		
Specific gravity, Cleavage, Fracture, and Tenacity. Description of the		
following minerals, Quartz and its verities, Calcite, Talc, gypsum,		
Fluorite. Appatite. Corundum, Assebestose, Kainite, Beryl, Mica,		
Garnet, Barite, etc. Ore forming minerals like Hematite, Pyrolsite,		
Magnetite, Limonite magnsite, Gybbsite, Bauxite, Banded hematite		
quartzite etc.		
Module-II		
Petrology: Definition of the rocks, formation and general classification	8 hours	
of the rocks. igneous rocks, sedimentary rocks metamorphic rocks.		
Igneous rocks: Definition, Forms, Texture, Structure, and		
Classification of the Igneous rocks. Description and physical properties		
of the following rocks. Granite, Syanite, Diorite. Dolerite, Basalt,		
Felsites, Pumice, Pegmatite, Trachite etc.		
Sedimentary rocks.: Definition, Structure, and Classification of the		
Sedimentary rocks. Description and Physical properties of the		
following rocks. Conglomerate, Breccias, sandstone, shale, Limestone,		
laterite, coal, etc.		
Metamorphic rocks: Definition, Agents and kinds of metamorphic		
rocks . Description and physical properties of the following rocks.		

Gneiss, Marble, Schist, Quartzite, Slate, Charnokite, Phyllite etc.		
Module –III		
Geomorphology and geodynamics: Hypo genetic and Epigenetic		
agents	8 hours	
Weathering : Definition, Deferent kinds of weathering with examples.		
Soil : Definition, Soil profile, Classification, Erosion, and Conservation		
of the Soil.		
Earthquake: Causes, Effects, Classification, Concept of plate		
tectonics		
Geomatics and environmental geology: Application of Remote		
Sensing and GIS techniques in civil Engineering works. impacts of		
mining, Quarrying, dams, reservoirs.		
Module IV		
Structural geology: Elements of structural geology, dip, strike,	5 hours	
Clinometer's compass Description Classification, and engineering		
importance of folds, faults, unconformities and joints.		
Groundwater geology : Hydrological cycle, water bearing properties	5 hours	
of rocks. Aquifers, types of Aquifers Aquiclude, Aquitar etc. brief		
description about geological and geophysical methods of ground water		
investigation. detail study of electrical resistivity method.		
Module –V		
Geological site investigation: Geological consideration and brief		
description about Dams, Reservoirs, Tunnels, Highways, Bridges,		
Rocks as materials for construction, Flooring, Foundation, Roofing		
Decoration, and road materials.		
Ouestion paper pattern:		

Question paper pattern:

Two questions to be set from each modules. students have to answer each question from every modules.

Text books:

- 1) Garg S.k "physical and engineering geology "Khanna publication new Delhi.
- 2) Parbin singh "Engineering and general geology" kaston publication house.
- 3) p. k. Mukharjee: a text book of geology.

Reference Books:

- 1) Legeet, Geology of engineers McGraw hill company 1998
- 2) Blyth: geology of engineers ELBS 1995
- 3) m .t marutesh reddy "Elements of geology practical's ".new age international pvt ltd 2003
- 4)) H.H READ "rutleys Elements of mineralogy" .CBS PUBLISHER 2003
- 5) billings "Structural geology,
- 6) Pradeep kumar ghua ." Remote sensing for bingers " east west press ltd

E books and online course materials:

www.civilenggebooks.com

Course outcomes: On completion of the course, the student will have the ability to:

Course	CO#	Course Outcome (CO)	Blooms
Code			Level
	CO1	IDENTIFY THE different types of mineral	
		with respect to their physical properties.	C2
	CO2	IDENTIFY THE DIFFERENT TYPES OF	
		ROCKS THAT IS IGNEOUS, SEDIMENTARY	
		& METAMORPHIC	C2
	CO3	Select the suitable area for the particular	
		construction with reference to their	
		geological structures i.e., folds, faults,	
		and joints etc.	C2
	CO4	Understand the subsurface strata's with	
		respect to water table and saturated zone	C3
	CO5	Describe the applications of geological	
		background to some civil engineering	
		work, which required for the design of	
		civil engineering work.	P2

ENGINEERING GEOLOGY LAB			
Course Code 18CVL46 CREDIT:01			
Number of Lecture Hours/Week	2 hrs (Practical)	SEE: 50 Marks	
Total Number of Lecture Hours: 28	CIE: 50 Mraks	SEE: 03 Hours	

Prerequisite: none

Course objectives:

To enable the Student to acquire the knowledge in the

- 1. Various types, of minerals with their physical properties..
- 2. Various types of Rocks, and their Physical properties.

Q1. Identification of the given minerals minimum no 12-14.

- 3. Dip and strike of various structural features.
- 4. Drawing the geological section maps.

	Experiments	Teaching
	-	Hours
1)	Hardness test	3 Hrs.
2)	Detail study of the physical properties of the following minerals	6 Hrs
	Rock forming minerals quartz and its verities, feldspar and its	
	verities, gypsum, calcite, fluorite, apatite, topaz, corundum, beryl,	
	asbestoses, kyanite, biotite, muscovite, talc, kaolin, garnet,	
	Ore forming minerals, such as hematite, magnetite, magnasite,	
	limonite, gibbsite, chalcopyrit, pyrite, chromite's, pyrolsite,	
	psyllomelane, bauxite, banded hematite quartzite, graphite.	
		0.11
3)	Detail study of the physical properties of the following rocks in	3 Hrs
	hand specimens	
	Igneous rocks: description and engineering uses of the following	
	rock. Granite, syanite, dolerite, diorite, felsite, trachyte, pumice,	
	basalt, pegmatite, ryolite . Etc	
	Sedimentary rocks: description and engineering uses of the	3 Hrs
	following rock. Limestone, sandsone, laterate, shale, conglomerate,	
	breccias etc.	
	Metamorphic rocks: description and engineering uses of the	
	following rocks . Marble, schist, quartzite, slate, genesis, phyllite,	
	charnokite etc	3Hrs
4)	Dip and stike problems.	3 Hrs
5)	Thickness problems.	3 Hrs
6)	Three-point borehole problems.	4 Hrs
7)	Geological section map drawing	4 ПІ
Overtion paper patterns		
Question paper pattern:		

- Q2. Identification off given rocks minimum no 12-14.
- Q3. Draw the given geological section map and explain geology of that area.
- Q4. solve the each problems on dip and strike, thickness, three point borehole problems.

Text books:

Papers from the international journals (scopus index and web of science).

Reference Books:

Papers from the international journals (scopus index and web of science).

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course	CO#	Course Outcome (CO)	Blooms
Code			Level
	CO1	Demonstrate the concepts of SOM theory course through series of experiments.	C2
	CO2	Share the responsibilities in small teams of 4-5 members for conducting the experiments.	C3
	CO3	Perform the experiments and determine Hardness test, detail study on physical properties of rock and ore minerals, igneous rock, sedimentary rock, metamorphic rock, determine problems on dip and strike, thickness, three point borehole and geological section map drawing parameters.	C3
	CO4	Analyse the data and interprete the results.	C4
	CO5	Prepare a well-organized laboratory report.	C3

STRENGTH OF MATERIALS LAB							
Course Code	18CVL47	CREDIT:01					
Number of Lecture Hours/Week	2 hrs (Practical)	SEE: 50 Marks					
Total Number of Lecture Hours: 28	CIE: 50 Marks	SEE: 03 Hours					

Prerequisite: none

Course objectives:

To enable the student to acquire the knowledge in the following topics

- ➤ Determine tensile, compressive, torsional, shear and Impact strength of steel samples and interpret the results.
- ➤ Determine compressive strength and bending strength of wood samples and interpret the results
- > Determine strength properties of brick and tile and interpret the results.

		Teaching Hours
1.	Tension test on Mild Steel.	02 Hrs
2.		02 Hrs
	Tension test on HYSD bar	
3.	Torsion test on Mild Steel circular sections.	02 Hrs
4.	Bending test on Wood under two-point loading.	02 Hrs
5.	Compression test of Mild Steel, Cast iron and Wood.	02 Hrs
6.	Shear Test on Mild Steel.	02Hrs
7.	Impact test on Mild steel (Charpy & Izod)	02 Hrs
8.	Hardness test on ferrous and non-ferrous metals-Brinell's Rockwell and Vickers's methods.	
9.	Test on Bricks: Compressive strength, Water absorption and Efflorescence.	06 Hrs
10.	Test on Tiles: Flexural strength, abrasion resistance.	04 Hrs
11.	Demonstration of Strain gauges and Strain indicators.	02Hrs

Question paper pattern:

Student have to conduct two tests one on major experiments (1 to 4 in syllabus) and one test on remaining experiments (5 to 11 experiments). Picked by the student and he has to prepare writeup and conduct experiment.

Text books:

Reference Books:

1. Davis, Troxell and Hawk, Testing of Engineering Materials, International Student edition-Mcgraw Hill Book Co. New Delhi.

- 2. Fenner, George Newness, Mechanical Testing of Materials Ltd., London.
- 3. Holes K.A, Experimental Strength of Materials, English Universities Press Ltd. London.

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course	CO#	Course Outcome (CO)	Blooms
Code			Level
	CO1	Demonstrate the concepts of SOM theory course through series of experiments.	C2
	CO2	Share the responsibilities in small teams of 4-5 members for conducting the experiments.	C3
	CO3	Perform the experiments and determination of Tension test, Compression test, Torsion test ,Bending test ,Shear Test ,Impact test on Mild steel (charpy & Izod),Hardness test ,Test on Bricks: Compressive strength, Water absorption and Effloroscence, Test on Tiles: Flexural strength, abrasion resistance, Demonstration of Strain gauges and Strain indicators parameters.	C3
	CO4	Analyze the data and interpret the results.	C4
	CO5	Prepare a well-organized laboratory report.	C3

ADVANCE SURVEYING LAB-1							
Course Code	18CVL48	CREDIT 01					
Number of Lecture Hours/Week	2 hrs (Practical)	CIE: 50 Marks					
Total Number of Lecture Hours: 28	CIE: 50 Marks	SEE: 03 Hours					

Prerequisite: none

Course objectives: To enable the student to acquire the knowledge in the following topics

	Teaching Hours
1.a) Measurements of horizontal angles by Reiteration method using transit theodolite.	02 Hours
2. Measurement of vertical angle using transit theodolite.	02 Hours
3.To Determine of Distance and elevation of an inaccessible object using single plane method.	02 Hours
4. To Determine the Distance and Elevation of an object using double plane method when the base of an object is inaccessible.	02 Hours
5.To Determine the Distance and Elevation of an object, when line of sight is inclined by fixed stadia hair system of tachometry	02 Hours
6. To determine the tachometer constant using horizontal and inclined line of sight.	02 Hours
7 To Setout simple circular curve by Rankine's deflection angle method	02 Hours
8. Introduction to Total Station, Parts of total station and their functions, setting up, levelling up and centering of TS.	02 Hours
9. Determination of distance between two inaccessible points using	02 Hours
RDM and determination 0f height of any object using REM. 10 Exposer of total station for orientation by back sighting	02 Hours
11. Determine the area of field by using total station.	00.11
12. Exposure of use the total station for traversing & using relevant software for preparation of the contour drawing.	02 Hours 02 hours

13 Exposure of use the total station for stake out.	02hours
14 Exposure of total station for free stationing	02hours
15 Demonstration of digital planimeter for Finding area of contour	02hours

Conduct any one experiment by picking up student and he has to prepare writeupand conduct experiment.

Text books:

- 1 Bhavikatti S S, surveying & levelling, 3 edition, hubli-2008
- 2 K R Arora, plane and advanced surveying, standard book house, New Delhi
- 3 B C Punmia, surveying volume-ii, jain publication, New Delhi

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course Code	` '				
Cour	CO1	Demonstrate the concepts of Survey theory course through series of experiments.	C2		
	CO2	Share the responsibilities in small teams of 4-5 members for conducting the experiments.	C3		
	CO3		C3		
	CO4	Analyse the data and interpret the results.	C4		
	CO5	Prepare a well-organized laboratory report.	C3		

Hyderabad Karnataka Education Society's

Poojya Doddappa Appa College of Engineering

(An Autonomous Institution & Affiliated to

Visvesvaraya Technological University, Belagavi)

Aiwan E-Shahi Area KALABURAGI 585 102 Karnataka India

SCHEME AND SYLLABUS

FOR B.E. V SEMESTER AND VI SEMESTER

FOR THE ACADEMIC YEAR 2020-21

DEPARTMENT OF CIVIL ENGINEERING

About College:

Poojya Doddappa Appa College of Engineering (PDACE) is the first institution of Hyderabad Karnataka Education (HKE) Society, Kalaburagi, which was established in the year 1958. The foundation stone of this college was laid by the then Vice President of India Dr. Sarvapalli Radhakrishnan in 1958.

At present, PDA College of Engineering is offering 11 UG programs, 10 PG Programs and 12 Research centers, spreading and imparting technical education in North Karnataka Region. The college has state of the art laboratories, digitalized smart class rooms having highly qualified and experienced faculty with highest no. of Ph.D. and M. Tech degrees.

PDACE is the only Autonomous Institution in the region, which was sponsored under TEQIP I, TEQIP-II and TEQIP-III from World Bank and received grants of Rs.10.43 crores, Rs. 17.5 crores and 7 crores respectively. This is one among 12 institutions having TEQIP-I and TEQIP -II sponsorship. At present, college is selected in TEQIP-III as Mentor Institution for <u>Bundelkhand Institute of Engineering & Technology</u>, Jhansi.

The Vision and Mission of PDA College of Engineering are as mentioned below.

VISION

• To be an institute of excellence in technical education and research to serve the needs of the industry and society at local and global levels.

MISSION

- To provide a high-quality educational experience for students with values and ethics that enables them to become leaders in their chosen professions.
- To explore, create and develop innovations in engineering and science through research and development activities.
- To provide beneficial service to the national and multinational industries and communities through educational, technical and professional activities.

About Department of Civil Engineering

The Civil Engineering Department was established in the year 1958with an intake of 60 students. In 1994 the intake was increased to 90 and further increased to 180 in the year 2014. Presently the department runs both UG and PG (Environmental Engineering and Structural Engineering) programs with intake of 180 in UG program and 18 in each PG program. Department is recognized as Research Centre by Visvesvaraya Technological University Belagavi in the year 2002 and at present 35 research scholars are pursuing their Ph.D. and seven research scholars have been awarded with Ph D degree.

The Department has signed MoU with various industries like Medini, Sharan Technical consultancy, Canter Technologies Pvt. Ltd, Sharan Chandra Consultant, JGD Consultants, Jalavahini Management Services Pvt. Ltd. Dharwad, Shah Technical Consultants Pvt. Ltd., PP Raju & Co., Design Consortium, KRIDL, Bharath Dal and Oil Industries, Ultratech, ACC, Alstom, Karnataka State Pollution Control Board & HCC. These MoUs have helped the students in getting exposure to industrial environment and also for conducting Industry Institute Interaction events. The Vision, Mission and Program educational objectives of Civil Engineering Department are as

VISION

follows:

 To be the preeminent department for imparting technical knowledge and skills in the Civil Engineering field to meet the social, industrial, environmental and research needs at local and global levels.

MISSION

- To provide technical education to meet the challenges in the profession through a well-structured curriculum.
- To inculcate innovation and research ideas for sustainable development with ethical background.
- To impart entrepreneurial skills for serving the needs of the society through technical and professional activities.
- To create Civil Engineering professionals to serve the needs of the industry at local and global levels.

PROGRAMEDUCATIONALOBJECTIVES(PEO'S)

Program educational objectives are broad statements that describe the Career and Professional accomplishments that the program is preparing graduates to achieve. The program educational objectives of the B.E. in Civil Engineering Program at PDA College of Engineering, Kalaburagi are:

PEO1: To provide the knowledge of mathematics, science and engineering fundamentals for solving civil engineering problems.

PEO2:To enable the graduates to exhibit their technical knowledge and skills of recent practices to identify and solve civil engineering problems.

PEO3:To enable the graduates to conduct and interpret the results of laboratory/ field experiments in basic sciences, engineering sciences and civil engineering.

PEO4: To enable the graduate for pursuing higher education and lifelong learning.

PEO5:To enable the graduates to acquire communication, team work and entrepreneurial skills along with the values of professional ethics.

PROGRAM OUTCOMES

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

The Civil Engineering graduates are able to:

PSO1: Plan, Analyze and Design buildings, Water supply and Sewerage systems, Hydraulic structures and Transportation infrastructure using sustainable materials and conceptual knowledge of Geotechnical engineering.

PSO2: Conduct survey and Laboratory experiments/ field investigations and interpret the data for application to real life problems.

PSO3: Prepare detailed estimate of civil Engineering works and Execute the civil Engineering Projects with optimum resources using effective communication skills and Professional ethics

V SEMESTER

Code No.	Course		Hours/Week Maximum Marks				Marks		
		Lecture	Tutorial	Practical	Self-	Credits	CIE	SEE	Total
					study				
			THE	ORY					
18HU51	MANAGEMENT AND	3		0	-	3	50	50	100
	ENTREPRENEURSHIP								
18CV52	ENVIRONMENTAL	3		0	1	3	50	50	100
	ENGG– II								
18CV53	GEOTECHNICAL	3	2	0	-	4	50	50	100
	ENGG – I								
18CV54	CONCRETE	3		0	1	3	50	50	100
	TECHNOLOGY								
18CV55	STRUCTURAL	3	2	0	-	4	50	50	100
	ANALYSIS – I								
18CV56x	MECHANIZATION IN	3		0	-	3	50	50	100
	CONSTRUCTION								
	(INDUSTRIAL								
	ELECTIVE)								
18HU01	SOFT SKILL TRAINING	1		0	-	1	50	50	100
18CV59	CIV/CIP	2			-	0	50	50	100
			PRAC'	ΓICAL					
18CVL57	GEOTECHNICAL	0	0	2	-	1	50	50	100
	ENGINEERING LAB								
18CVL58	ENVIRONMENTAL	0	0	2	-	1	50	50	100
	ENGG LAB								
		20	04	04	2	23	500	500	1000
TOTAL									
		l	l						

INDUSTRIAL ELECTIVE:

18CV561	MECHANISATION IN CONSTRUCTION
18CV562	INDUSTRIAL SAFETY AND HEALTH
18CV563	ALTERNATE BUILDING MATERIALS

VI SEMESTER

Code	Course	Hours/Week Maximum Marks					Marks		
No.		Lecture	Tutorial	Practical	Self-	Credits	CIE	SEE	Total
					study				
		Т	THEORY						
18CV61	STRUCTURAL	3	2	0	-	4	50	50	100
	ANALYSIS –II								
18CV62	GEOTECHNICAL ENGG	3	2	0	-	4	50	50	100
	- II								
18CV63	TRANSPORTATION	3		0	-	3	50	50	100
	ENGG								
18CV64x	ELECTIVE – I	3		0	-	3	50	50	100
18CV65x	ELECTIVE – II	3		0	-	3	50	50	100
18CV66x	OPEN ELECTIVE-I	3		0	-	3	50	50	100
18HU02	APTITUDE TRAINING-I	1		0	-	1	50	50	100
		PR	ACTICA	L					
18CV67	EXTENSIVE SURVEY	1	0	2	-	2	50	50	100
	PROJECT*(MINI								
	PROJECT)								
18CVL68	CONCRETE AND	0	0	2	-	1	50	50	100
	HIGHWAY MATERIAL								
	TESTING LAB								
18CVL69	SOFTWARE BASED	1	0	2		2	50.	50	100
	LAB								
	INTERNSHIP	To be ca	rried out d	luring the	-				
		intervening vacations of VI							
and VII semesters									
TOTAL		21	04	06	-	26	500	500	1000

* THIS HAS TO BE CONDUCTED DURING VACATION BETWEEN $5^{\mathrm{TH}}\&~6^{\mathrm{TH}}$ SEMESTER

ELECTIVE I	ELECTIVE - II	OPEN ELECTIVE-I
18CV641- STRUTURAL	18CV651- THEORY OF	18CV8OE661 - ECOLOGY
DYNAMICS	ELASTICITY	AND ENVIRONMENT
18CV642- DESIGN OF	18CV652-BUILDING	18CV8OE662 - REMOTE
MASONRY STRUCTURES	SCIENCE AND	SENSING & GIS
	ENGINEERING	
18CV643 ADVANCED	18CV653- MAT LAB AND	18CV8OE663 -NUMERICAL
SURVEYING	APPLICATIONS	METHODS IN CIVIL
		ENGINEERING

V SEMESTER

Course Title: ENTREPRENEURSHIP AND MANAGERIAL ACCOUNTING			
Course Code	18HU51	Credit: 3	
Number of Lecture Hours/Week	3 (Theory)	SEE: 50 Marks	
Total Number of Lecture Hours: 42	CIE: 50 Marks	SEE Hours: 03	

Prerequisite: none

Course objectives:

To enable the students to obtain the basic knowledge about Entrepreneurship and Managerial Accounting in the following topics: -

- 1. The Meaning, Functions, Characteristics, Types, Role and Barriers of Entrepreneurship
- 2. The Definition, Characteristics, Need, Objectives, Role, Advantages, Problems and steps to start an SSI and Institutional Support
- 3. Preparation of Project and Source of Finance
- 4. Fundamentals of Financial Accounting
- 5. Personnel and Material Management, Inventory Control

Modules		
Module I		
Entrepreneur: Meaning of Entrepreneur; Functions of an		
Entrepreneur; Characteristics of an entrepreneur, Types of		
Entrepreneurs; Intrapreneurs – an emerging class; Role of	8 hours	
Entrepreneurs in economic development; Barriers to entrepreneurship,		
Government Support for Innovation and Entrepreneurship in India -		
Startup-India, Make-in-India, PMMY, AIM, STEP, BIRAC, Stand-up		
India, TREAD		
Module II		
Management : Introduction – Meaning – nature and characteristics of		
Management, Scope and functional areas of management, Roles of		
Management, Levels of Management, Henry Fayol - 14 Principles to		
Management, Engineers Social responsibility and Ethics		
Module III		
Preparation of project and source of finance:		
Preparation of project: Meaning of project; Project Identification;		
Project Selection; Project Report; Need and Significance of Report;		
Contents;	8 hours	
Source of finance: Long Term Sources (Equity, Preference, Debt		
Capital, Debentures, loan from Financial Institutions etc) and Short-		
Term Source (Loan from commercial banks, Trade Credit, Customer		
Advances etc)		
Module IV		
Fundamentals of financial accounting: Definition, Scope and		

Functions of Accounting, Accounting Concepts and Conventions:	9 hours	
Golden rules of Accounting, Final Accounts - Trading and Profit and		
Loss Account, Balance sheet		
Module V		
Personnel management, material management and inventory		
control:		
Personnel management: Functions of Personnel Management,		
Recruitment, Selection and Training, Wages, Salary and Incentives		
	8 hours	
Material management and inventory control: Meaning, Scope and		
Objects of Material Management. Inventory Control- Meaning and		
Functions of Inventory control; Economic Order Quantity (EOQ) and		
various stock level (Re-order level, Minimum level, Maximum level,		
Average level and Danger level)		

Two questions is to be set from each module by intermixing the topic in the same module. Total five questions to be answered by selecting minimum one question from each module.

Text books:

Reference Books:

- 1. Financial Accounting -B S RAMAN- United Publishers Mangalore, Maheswar S N & Maheshwari S K-Vikas Publishing House.
- 2. Management & Entrepreneurship- K R Phaneesh- Sudha Publications, Prof Manjunath& Amit kumar G Laxmi Publication, Veerbhadrappa Havina l-New Age International Publications.
- 3. Industrial Organization & Engineering Economics-T R Banga& S C Sharma-Khanna Publishers, Dehli

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course	CO#	Course Outcome (CO)	
Code			
	CO1	Describe about Entrepreneurship	
	CO2	Apply the concepts of management and Engineers Social responsibility & Ethics practice.	
	CO3	Prepare project report & choose different Source of Finance.	
	CO4	Apply Fundamentals of Financial Accounting and interpret the final accounts.	
	CO5	Apply personnel management skills, Material a inventory control techniques.	

Course Title: ENVIRONMENTAL ENGINEERING – II		
Course Code	18CV52	Credit: 3
Number of Lecture Hours/Week	3hrs. (Theory)	SEE: 50 Marks
Total Number of Lecture Hours: 42	CIE: 50 Marks	SEE: 03 Hours

Prerequisite: Environmental engineering –I

Course objectives:

To enable the student to acquire the knowledge in the following topics.

- 1. Fundamentals of waste water engineering.
- 2. Various components of sewerage system.
- 3. Quantitative and qualitative assessment of waste generated.
- 4. Solve waste treatment unit design problems using hydraulic principles and methods.
- 5. Operation of waste water treatment units.

Advance treatment methods

Modules		
	Hours	
MODULE-III		
Sewage pumping: Need, types of pumps and pumping stations.	02 Hours	
Disposal of effluents: By dilution, self-purification phenomenon,	03 Hours	
oxygen sag curve, zones of purification, sewage farming, sewage		
sickness, disposal standards on land and water, chlorination of sewage.	01 Hauss	
Treatment of sewage : Flow diagram of municipal sewage treatment	01 Hours	
Plant.		
MODULE-IV		
Primary Treatment: screening , grit chambers, skimming tanks,	02 Hours	
primary sedimentation tanks – Designs.		
Secondary Treatment: Trickling filter – types, theory and operation –		
Designs.		
Activated sludge process - principle and flow diagram, methods of		
aeration, modifications, F/M ratio – Design		
Sludge: methods of sludge disposal, sludge drying beds, sludge	04 Hours	
digestion tank.		
MODULE-V		
Miscellaneous treatment methods: Septic tank and Oxidation Ponds – Designs. Introduction to Aerobic lagoon, Anaerobic lagoon,		

Oxidation ditch, Anaerobic filters, RBC, UASB and Hybrid reactors. Sequencing of reactors viz., serial and parallel.

Question paper pattern:

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text books:

- 1. Environmental Engineering (Vol II) By S.K. Garg, Khanna Publishers
- 2. Environmental Engineering II By B.C. Punmia and Ashok Jain
- 3. Manual on Waste Water Treatment CPHEEO, Ministry of Urban Development, New Delhi
- 4. Water and Wastewater Engineering Vol II By Fair, Geyer, Okun, Willey Eastern Publishers, New York

Waste Water Treatment, Disposal and Reuse - By Metcalf & Eddy Inc... Tata McGraw Hill Publications (2003 Edition)

Reference Books:

- 1. Water Technology By Hammer & Hammer
- 2. Environmental Engineering By Howard.S. Peavy, Donald. Rowe, George Tchobanoglouse, McGraw Hill International Edition

E books and online course materials: www.civilenggbooks.com

Course outcomes:

Course	CO#	Course Outcome (CO)	
Code			
	CO1	Explain the suitability of different sewerage systems and estimate the quantity of sewage and storm water and design sewers (storm water drains)by different methods	
	CO2	Describe the different materials & shape of sewers and sewer appurtenances and evaluate the quality of sewage w.r.t physical, chemical and biological parameters	
	CO3	Describe the different types of pumps, methods of disposal of effluents and explain the steps involved in the sewage treatment	
	CO4	Design the primary and secondary treatment units –grit chamber, sedimentation tanks, trickling filter and activated sludge process.	
	CO5	Design the other treatment units septic tanks, oxidation ponds and ditches, aerobic lagoons & anaerobic lagoons and describe RBC, UASB and hybrid reactors	

GEOTECHNICAL ENGG - I			
Subject code	18CV53	Credit: 04	
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 hours	

Prerequisite: Engineering geology

Course objectives:

To enable the student to acquire the knowledge in the following topics.

- 1. Understand basic properties of soil
- 2. Use standard methods to classify soils
- 3. Determine compaction, permeability of soil.
- 4. Understand the structure and minerals of the soil.
- 5. Develop an understanding of Shear strength of soil.

5. Develop an understanding of Shear strength of soil.		
Modules		
	Hours	
Module I		
Introduction: Definition, origin and formation of soil, Phase Diagram, Voids ratio,	4 hours	
Porosity, Percentage Air Voids, Air content, Degree of saturation, Moisture		
content, Specific gravity, Bulk density, Dry density, Saturated density, Submerged		
density and their inter relationships and Density index. Field identification of soils.		
Index properties of soils and their determination: Index properties of soils-	6 hours	
Water content, Specific Gravity, Particle size distribution, Consistency limits and		
indices, insitu density, Activity of Clay, Sensitivity of clay, Thixotropy of clay and		
collapsible soils. Laboratory determination of index properties of soils: Specific		
gravity by Pycnometer /density bottle method, particle size distribution (Sieve		
analysis and Hydrometer analysis only), Liquid Limit Casagrande and cone		
penetration methods, Plastic limit and shrinkage limit determination.		
Module-II		
Classification of soils: Particle size classification – MIT classification and IS	3 hours	
classification, Textural classification. Unified soil classification and IS		
classification - plasticity chart and its importance.		
Flow of water through soils: Darcy's law- assumptions and validity, coefficient of	5 hours	
permeability and its determination (laboratory), factors affecting permeability,		
permeability of stratified soils, Seepage velocity, Superficial velocity and		
coefficient of percolation, effective stress concept-total pressure and effective		
stress, quick sand phenomena, Capillary Phenomena.		
Module-III		
Clay mineralogy and soil structure: Single grained, honey combed, flocculent	04 Hours	
and dispersed structures, Valence bonds, Soil-Water system, Electrical diffuse		
double layer, adsorbed water, base-exchange capacity. Common clay minerals in		
soil and their structures- Kaolinite, Illite and Montmorillonite.	0.4.77	
Compaction of soils definition: Standard and Modified proctor's compaction	04 Hours.	
tests, factors affecting compaction, effect of compaction on soil properties, Field		
compaction control-proctor needle.		

Module -IV	
Consolidation of soils: Definition, Mass-spring analogy, Terzaghi's one	08 Hours
dimensional consolidation theory, assumption and limitations. Normally	
consolidated, under consolidated and over consolidated soils. Reconsolidation	
pressure and its determination by Casagrande's method. Laboratory one	
dimensional consolidation test. Determination of consolidation characteristics of	
soils-compression index. and coefficient of consolidation, Determination of	
coefficient of consolidation by square root of time fitting method and logarithmic	
time fitting method.	
Module-V	
Shear strength of soil: Concept of shear strength, Mohr's strength theory, Mohr-	8 hours

coulomb theory, measurement of shear parameters. Direct shear test, unconfined compression test, Triaxial compression test and vane shear test. Test under different drainage conditions. Conventional and modified failure envelops. Total

and effective shear strength parameters, factors affecting shear strength of soils.

Course Outcomes: On completion of this course, students are able to:

CO		BL
CO1:	Determine the index properties of soil	
CO2:	Apply the principal of flow of water through the soil and also classify the soil	
CO3:	Explain the importance of clay mineralogy in soil structure and determine the density of soil by compaction	
CO4	Determine the consolidation parameters and settlement of soil due to consolidation	
CO5	Analyze the shear strength of soil for various site conditions	

Question paper pattern:

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

Dr.V.N.S. Murthy, "Soil Mechanics and Foundation Engineering" Sai Tech Publishers, Chennai.

- 2. Dr B.C Punmia., "Soil Mechanics and Foundation Engineering" Laxmi Publications Private Ltd. New Delhi.
- 3. Iqbal.H. Khan, "Text Book of Geotechnical Engineering" 2nd edition, PHI, India (2005).
- 4. Dr. K.R. Arora, "Soil Mechanics and Foundation Engineering" standard Publishers and Distributors, Delhi.

Reference books:

Reference Books: Braja. M. Das, "Principles of Geotechnical Engineering"

- 2. Dr. C. Venkataramaiah, "Geotechnical Engineering" New age Publications.
- 3. Gopal Ranjan and A.S.R. Rao, "Basic and Applied Soil Mechanics" New age international (P) Ltd., New Delhi, 2nd edition, (2000).

Nptel Link: https://youtu.be/afirGWlleSM

E-Books: www.civilenggebooks.com

Course Title CONCRETE TECHNOLOGY			
Course Code	18CV54	Credit: 03	
Number of Lecture Hours/Week	3 Hrs (Theory)	SEE:50 Marks	
Total Number of Lecture Hours: 42	CIE:50 Marks	SEE: 03 Hours	

Prerequisite: none

Course objectives:

To enable the Student to acquire the knowledge in the following topics

- 1. Hydration of cement and physical properties of cement and types of cement.
- 2. Physical properties of course and fine aggregate.
- 3. Design of concrete mix.
- 4. Fresh and hardened state property of concrete.
- 5. Destructive and Non-destructive testing of concrete.

5. Destructive and Non-destructive testing of concrete.		
Modules	Teaching	
	Hours	
Module I		
Cement: Manufacture of OPC by dry and wet process (Flow charts	7 hours	
only). Oxide composition, compound composition of cement,		
hydration of cement, capillary pore, gel pore. Tests on cement-		
Fineness by sieve test and Blaine's air permeability test, normal		
consistence test, setting time, soundness, compressive strength of		
cement. Types of Cement		
Module-II		
Aggregate: Coarse aggregate, importance of size, shape, texture,	7 hours	
grading of aggregates-sieve analysis, specific gravity, moisture content,		
bulk density, bulking of fine aggregate, flakiness and elongation index,		
crushing, ten percent fine value test, impact and abrasion tests,		
deleterious materials. Grading requirements, practical grading, gap		
grading.		
Module -III		
Concrete Mix Design: Factors to be considered in mix design,	5 hours	
different methods of mix design. Mix design by IS method and Current		
British method.		
Fresh Concrete: Workability- factors affecting, measurement of	5 hours	
workability-slump, compaction factor, Vee-bee consistometer, flow		
tests. Segregation and bleeding, mixing, placing and compaction.		
Curing and methods of curing, accelerated curing. SCC		
Module IV		
Fresh Concrete: Chemical admixture-plasticizer, superplasticizer,	5 hours	
accelerators, retarders and air entraining agents. Mineral admixtures-		
fly ash and silica fume.		
Hardened Concrete: Factors affecting strength- w/c, degree of	5 hours	
compaction, age, aggregate/cement ratio, aggregate properties,		
maturity concept. Elasticity, factors affecting modulus of elasticity,		

relation between modulus of elasticity and Poisson's ratio.	
Shrinkage- types of shrinkage, factors affecting shrinkage. Creep-	
factors affecting creep, effect of creep. Durability-importance,	
permeability, sulphate attack, chloride attack, carbonation, freezing and	
thawing. Factors contributing to cracks in concrete shrinkage,	
settlement cracks construction joints	
Module -V	
Testing: Relation between tensile strength and compressive strength.	8 hours
Destructive testing-compressive strength, flexural strength, split tensile	
strength, factors influencing strength test results. Failure criteria,	
fracture mechanics. Nondestructive testing-types, principles,	
application and limitations of rebound hammer and ultrasonic pulse	
velocity tests.	

Two questions to be set from each Module by intermixing (in total 10). Students have to answer any five full questions by selecting one question from each module.

Text books:

- **1.** Neville A.M. and Brooks J.J. "Concrete Technology", ELBS edition, London.
- 2. Shetty M.S. "Concrete Technology theory and Practice", S. Chand and company, New Delhi, 2002.

Reference Books:

- 1 Neville A.M. "Properties of concrete", Darling Kinderslay (India) Pvt. Ltd.
- 2 Gambir M.L. "Concrete Technology", Dhanapat Rai and Sons, New delhi.

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

Course Code	CO #	Course Outcome (CO)			
	CO1	Explain manufacturing of cement and the significance of physical properties of cement.	C2		
	CO2 Describe and identify the requirements of good quality fine aggregate and coarse Aggregate.		СЗ		
	CO3 Design a concrete mix and Explain the fresh state property requirements of concrete and		C4		
	CO4	Evaluate the influence of different parameters on the properties of hardened concrete			
	CO5	Analyze the quality of hardened concrete using the results of different types of destructive and non-destructive method of tests.	C2		

Course Title STRUCTURAL ANALYSIS-1		
Course Code	18CV55	Credit: 04
Number of Lecture Hours/Week	3 Hours (Theory) 2 Hours Tutorial	SEE: 50 Marks
Total Number of Lecture :52 Hours	CIE: 50 Marks	SEE: 03 Hours

Prerequisite: Elements of civil engg, Strength of material

Course objectives:

To enable the student to acquire the knowledge in the following topics

- ➤ Determine the degree of freedom and degree of redundancy and analyse trusses.
- Analysis of coplanar structures for displacements using strain energy methods.
- Analysis for displacements by using classical methods and analyse the unknown reactions and internal forces in arches.
- Analysis of cables and indeterminate arches, C-programming of trusses.

➤ Analysis for moving loads.

Modules	Teaching
	Hours
Module I	
Structural systems: Forms of structures, conditions of equilibrium,	10 hours
degree of freedom, linear and non-linear structures, one, two, three	
dimensional structural systems, determinate and indeterminate	
structures [static and kinematics], principle of superposition.	
Plane trusses: Introduction, analysis by method of joints, analysis by	
method of sections.	
Module-II	
Strain energy: Strain energy and complimentary strain energy. Strain	12 hours
energy due to axial load, bending and shear, theorem of minimum	
potential energy, Law of conservation of energy, Principle of virtual	
work, the first and second theorem of Castigliano, betti's law, Clarke	
-Maxwell's theorem of reciprocal deflection. Numerical examples on	
beams, trusses, frames.	
Module -III	
Deflection of beams: Moment area method, Conjugate beam method.	10 hours
Arches: Three hinged circular and parabolic arches with supports at	
same levels and different levels, Determination of thrust, shear and	
bending	
Module IV	
ARCHES AND CABLES: Two hinged parabolic arch, two hinged	10 hours
circular arch, Analysis of cables under point loads and UDL, length of	
cables (support at same levels and different levels).	
Development of c-programming: For analysis of trusses by method	
of joints.	
Module -V	
Rolling loads: Rolling load analysis for a simply supported beam for	10 hours
several concentrated loads, rolling load analysis for simply supported	

beam for fractional UDL, ILD for reaction, shear force, bending moment at a given section. Derivation of condition for absolute bending moment under a chosen wheel load and for UDL moving on a span of a simply supported girder. Numerical on absolute maximum bending moment.

Question paper pattern:

Two questions to be set from each module by inter-mixing the syllabus of respective module. Students have to answer any five full questions by selecting minimum one question from each module.

Text books:

Reference Books:

- 1. K.U.Muthu atal, Basic Structural Analysis, I.K international publishing House, pvt .Ltd.
- 2. S.S. Bhavikatti, Structural Analysis, vol-I; Vikas publishing house, pvt. Ltd.
- 3. Norris and Willbur, "Elementary Structural Analysis" International student edition, McGraw Hill Co., New York.
- 4. Reddy C.S., "Basic Structural Analysis" Tata Mcgraw Hill, New Delhi.
- 5. B.C Punmia, R.K. Jain. "Strength of materials and theory of structures" Vol-I & II, Laxmi Publication, New Delhi.

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

CO#	Course Outcome (CO)	Blooms Level
CO1	Describe different types of structural systems	C2
	and analyze plane trusses	C3
CO2	Analyze the beams, trusses and frames using	C4
	energy principles	
CO3	Determination of slope and deflection by	C4
	moment area method and conjugate beam	
	method and analyse two hinged and three hinged	
	arches.	
CO4	Analyze arches and cables for shear and bending	C4
	moments	
CO5	Determine bending moment and shear force due	C3
	to rolling loads	

MECHANISATION IN CONSTRUCTION				
Subject code 18CV561 Credit: 03				
Hours/Week	3 hours. (Theory)	SEE: 50 Marks		
Total hours: 42	CIE: 50 Marks	SEE: 3 hours		

Subject code: 19CV551 Credit: 03

CIE: 50 Marks SEE: 50 Marks SEE: 3 hours

Hours/Week: 3 hours. (Theory)

Total hours: 42

Prerequisite: None

Course objectives:

This course enables students to understand

- 1. Various type of equipment's used in constructions advantage & limitations of these equipment's
- 2. Manufacturing of natural aggregate & recycled aggregate through mechanization.
- 3. Mechanization in rebar fabrication, concrete production, placement, types of form work & scaffolding and materials used.
- 4. Construction of bridge/flyover by segmented construction and box pushing technology for tunneling &pile driving equipment.
- 5. Construction methods of drilling blasting, tunneling &various equipment's used in this construction.

Modules	Teaching
	Hours
Module I	
Introduction to mechanization: Definition, advantages and limitations of	
mechanization, Indian scenario and Global scenario.	10 hours
Mechanization through construction equipment: Equipment cost, Machine	
power, production cycle-Dozers, scrapers, Excavators, finishing equipment, Trucks	
and Hauling equipment, Hoisting equipment, Draglines and Clamshells	
Module-II	
Mechanization in aggregate manufacturing: Natural aggregates and recycled	8 hours
aggregates	
Module-III	
Mechanization in rebar fabrication	8 hours
Mechanization in concrete production and placement	
Mechanization through construction: Formwork and scaffolding types, materials	
and design principles	
Module -IV	
Mechanization through construction methods/technologies: Segmental	8 hours
construction of bridges/flyovers, box pushing technology for tunneling, trench-	
less technology	
Pile driving equipment: Pile hammers, selecting a pile hammer, loss of energy due	
to impact, energy losses due to causes other than impact.	

	Madula V			
Module-V				
	nization through construction methods of drilling, Blasting and	8 hours		
	ling Equipment: Definition of terms, bits, Jackhammers, Drifters, wagon			
	chisel drills, piston drills, blast hole drills, shot drills, diamond drills,			
	ng equipment, selecting the drilling method equipment, selecting drilling			
pattern.	Selecting and Environmental issues in mechanization.			
Course	Outcomes: On completion of this course, students are able to:			
CO		BL		
CO1:	Definition and explaining of various construction equipment's.			
CO2:	Explain the manufacturing process of natural & recycled			
	aggregate			
CO3:	Explain the production and placement of concrete through			
	mechanization materials of formwork & design of formwork.			
CO4	Explanation on construction of bridge/flyover by segmental			
	construction & box pushing technology for tunneling and piledriving			
	equipment.			
CO5	Choose the sites for tunneling & drilling method equipment.			
Questi	on paper pattern:			
-	questions are to be set from each module.			
	ii) Total five questions are to be answered by selecting minimum one question from			
	each module			
Text be	Text book:			
1) Construction equipment by, S.C.Shrama				
	Reference books:			
	Link: https://youtu.be/2B7DhQvL8kw			
E-Bool	E-Books: www.civilenggebooks.com			

INDUSTRIAL SAFETY AND HEALTH				
Subject code 18CV562 Credit: 03				
Hours/Week	3 hours. (Theory)	SEE: 50 Marks		
Total hours: 42 CIE: 50 Marks SEE: 3 hours				

Teaching

Prerequisite:

Course objectives:

- 1.Understand the basics of risk assessment methodologies
- 2 Select appropriate risk assessment techniques
- 3 Analyze public and individual perception of risk
- 4 Relate safety, ergonomics and human factors
- 5 Carry out risk assessment in process industries

 Modules

		Hours
	Module I	
Genera	nl Risk Identification Methods – I:	
	identification methodologies, risk assessment methods-PHA,	
	P, MCA, consequence analysis, hazards in workplaces-nature and type	8 Hours
	k places, types of hazards, hazards due to improper housekeeping,	
hazards	due to fire in multi floor industries and buildings.	
	Module-II	
	ssessment Methods – II:	7 Hours
Risk a	djusted discounted rate method, certainty equivalent coefficient	
method	, quantitative analysis, probability distribution, coefficient of variation	
method	, Simulation method, Shackle approach, Hiller's model, Hertz Model.	
	Module-III	
	Ianagement – III: Emergency relief Systems, Diers program, bench	7 Hours
	xperiments, design of emergency relief systems, risk management	
	nandatory technology option analysis, risk management alternatives,	
	inagement tools, risk management plans, risk index method, Dowfire	
and exp	plosion method, Mond index Method.	
	Module -IV	
Property insurance, transport insurance, liability insurance, risk Assessment,		7 Hours
low Probability high consequence events. Fault tree analysis, Event tree		
analysi		
	Module-V	
Handling and storage of chemicals, process plants, personnel protection		7 Hours
	ent's. International environmental management system.	
Course	Outcomes: On completion of this course, students are able to:	
CO		BL
CO1:	Recall risk assessment techniques used in process industry	
CO2:	Interpret the various risk assessment tools	
CO3:	Use hazard identification tools for safety management	
CO4	Analyze tools and safety procedures for protection in process	
	industries	
CO5		
Questi	on paper pattern:	
·		

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

Risks in Chemical units, Pandya C G, Oxford and IBH publications, New Delhi, 1992

Reference books:

- 1. Functional Safety in the Process Industry: A Handbook of practical Guidance in the application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, North corolina, Lulu publication, 2012
- 2. Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and William M. Pensulvania ISA publication, 2005
- 3. Industrial safety and risk Management, Laird Wilson and Doug Mc Cutcheon. The University of Alberta press, Canada, 1st Edition, 2003

Nptel Link: https://youtu.be/v-eltsixu41

E-Books: www.civilenggebooks.com

ALTERNATE BUILDING MATERIALS				
Subject code 18CV563 Credit: 03				
Hours/Week	3 hours. (Theory)	SEE: 50 Marks		
Total hours: 42 CIE: 50 Marks SEE: 3 hours				

Prerequisite: Building Material and Constructions.

Course objectives:

to enable the student to acquire the knowledge in the following topics:

- 1. Energy in building materials and environmentally friendly and cost-effective building technologies.
- 2. Properties and applications of alternate building materials.
- 3. Properties and applications of alternative building technologies.
- 4.Design of masonry compression elements.
- 5.Cost effective buildings design and equipment for production of alternative materials

Modules	Teaching
	Hours
Module I	
Introduction: Energy in building materials, Environmental issues concerned to	8 hours
building materials, Global warming and construction industry, and	
environmentally friendly and cost-effective building technologies. Requirements	
for building of different climatic regions. Traditional building methods and	
vernacular architecture	
Alternate Building Materials: Characteristics of building blocks for walls, stones	
and laterite blocks, Bricks and hollow clay blocks.	
Module-II	
Alternate Building Materials: concrete blocks, stabilized blocks: mud blocks,	8 hours
steam cured blocks, Fal-G Blocks stone masonry block.	
Lime Pozzolana cement: Raw materials, manufacturing process, properties and	
uses. Fiber reinforced concrete-Matrix materials, Fibers: metal and synthetic,	
properties and applications Fiber reinforced plastics, matrix materials, Fibers:	
organic and synthetic, properties and applications. Building materials from agro	
and industrial wastes. Types of agro wastes, Types of industrial and mine wastes,	
properties and applications. Field quality control test methods.	
Module-III	
Alternative Building Technologies: Alternative for wall construction, Types	8 hours
construction methods, Masonry mortars types, preparation and properties.	
Ferrocement and ferroconcrete Building components, materials and specifications.	
Properties, construction methods, applications, alternative roofing systems-	
concepts, filler slabs, composite beam panel roofs, masonry vaults and domes.	
Structural Masonry: Compressive strength of masonry elements, factors	
affecting compressive strength, of units, prisms, /wallets and walls, effect of brick	
work bond on strength.	
Module -IV	0.1
Structural Masonry: Bond strength of masonry: Flexure and shear. Elastic	8 hours
properties of masonry materials and masonry.	
Equipment for Production of Alternative Materials: IS Code provisions, Design of	
masonry compression elements, concepts in lateral load resistance.	
Repair materials: Polymer based repair materials, cement-based repair materials.	

	Module-V	
	Effective Buildings Design: Cost concepts in buildings, cost saving ues in planning, design and construction. Cost Analysis: Case studies using	8 hours
of conc	nent for Production of Alternative Materials: Machines for manufacture rete, Equipment's for production of stabilized blocks. Moulds and methods action of precast elements.	
Concre	te repair: Repair Methodology-Determine cause, extent, severity and of damage repaired damage concrete surface- ceiling of large and small	2 hours
Course	Outcomes: On completion of this course, students are able to:	
CO		BL
CO1:	Understand environmentally friendly and cost effective building technologies	
CO2:	Explain raw materials, manufacturing process, properties and uses of alternate building Materials.	
CO3:	Select alternative building technologies for wall construction. Factors affecting compressive masonry unit	
CO4	Design of masonry compression elements materials	
CO5	Choose cost saving techniques in buildings, equipment for production of alternate materials repair methodology.	

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

- 1. Alternative Building methodologies for engineers and Architects
- 2. K.S. Jagadish and B.V.Venkatraman Reddy. IISC Bangalore. Structural Masonry: by Arnold W.Henry.

Reference books:

- 1.Relevant IS codes.
- 2. Alternative building materials and technologies.
- 3.Proceedings of workshop on Alternative building material and technology. 19th to 20th December 2003 at B.V.B College of Engineering and Technology Hubli

Nptel Link: https://youtu.be/05lQlQSBXm4

E-Books: www.civilenggebooks.com

Course Title: SOFT SKILL TRAINING			
Course Code	18HU01	Credit: 1	
Number of Lecture Hours/Week	2 Hours(Tutorials)	SEE: 50 Marks	
Total Number of Lecture Hours: 28	Hours CIE: 50 Marks	SEE Hours: 03	

Prerequisite: none

Course objectives:

To enable the Student to acquire the knowledge in the following topics

- To make students aware of test in recruitment process
- To develop logical, verbal reasoning skills.
- 3. To introduce them to proper body language grooming.4. To develop proper attitudes and values.

TOPICS	TAKE AWAY	METHODOLOGY	APPLICATIONS	DURATIONS
Emotional intelligence swat analysis brain storming mind map introduction to critical and lateral thinking puzzles	A structural analysis of self through swat, concepts of brainstorming, mind map. understanding critical thinking and lateral thinking through puzzles	learning,	What is swat analysis, mind map and process of brainstorming understanding out of the box thinking through solving critical and lateral thinking puzzles	12 hours
Verbal articles preposition pronoun idioms and phrases tenses	Understand the applications of articles prepositions, pronoun And tenses through examples.	_	Understanding the applications of the verbal topics	08 hours
Logical reasoning seating arrangement coding and decoding number series, letter series cubes	Focus on the concepts of seating arrangements, matrix arrangements, coding and decoding, series and cubes	_	WHAT IS BODY LANGUAGE? ITS RELEVANCE TO THE PARTICIPANTS, how to use social media effectively	08 hours

GEOTECHNICAL ENGINEERING LAB			
Subject code	18CVL57	Credit: 01	
Hours/Week	2 hours. (Practical)	SEE: 50 Marks	
Total hours: 28	CIE: 50 Marks	SEE: 3 hours	

Prerequisite: Engineering geology

Course objectives:

To enable the student to acquire the knowledge in the following topics

- 1. Determination of Specific gravity, moisture content, Grain size analysis, density by core cutter
- 2. Determination of Consistency limits- Liquid limit, plastic limit and shrinkage limit.
- 3. Determination of Standard Proctor compaction test and Modified Proctor Compaction test,
- 4. Determination of Coefficient of permeability, Strength tests, Unconfined compression test, Direct shear test (for small and big particle size), Triaxial compression test

	Modules Modules	Teaching Hours
1.	Test for determination of specific gravity and moisture content	2 hours
2.	Grain size analysis of soil sample (sieve analysis)	2 hours
3.	In situ density by core cutter and sand replacement methods.	
4.	Consistency limits- Liquid limit (Casagrande and conepenetration methods),	2 hours
	plastic limit and shrinkage limit.	
5.	Standard Proctor compaction test and Modified Proctor Compaction test.	2 hours
6.	Coefficient of permeability by constant head and variable headmethods	2 hours
7.	Strength tests	
	a) Unconfined compression test	2 hours
	b) Direct shear test (for small and big particle size)	2 hours
	c) Triaxial compression test	2 hours
8.	Consolidation test – determination of compression index and co -efficient of	2 hours
	consolidation.	
9.	Laboratory vane shear test	2 hours
	a) Demonstration of miscellaneous equipment's such as Augers, Samplers,	2 hours
	Rapid moisture meter, Proctor's needle.	
	b) Demonstration of Hydrometer test.	2 hours
	c) Demonstration of free Swell Index test	2 hours
	d) Demonstration of determination of relative density	2 hours
Co	Durse Outcomes: On completion of this course, students are able to:	

CO		BL
CO1:	Demonstrate the concepts of GT theory course through series of experiments.	
CO2:	Share the responsibilities in small teams of 4-5 members for conducting the experiments	
CO3:	Perform the experiments and determination of specific gravity, moisture content, Grain size analysis of soil sample, core cutter and sand replacement methods, Liquid limit, plastic limit and shrinkage limit, Standard Proctor compaction test, Modified Proctor Compaction test, compression index, co-efficient of consolidation, Laboratory vane shear test, Hydrometer test, Swell index test, relative density.	
CO4	Analyze the data and interpret the results.	
CO5	Prepare a well-organized laboratory report.	

Any one of the above experiments is to be conducted in the examination by the student.

Text book:

B.C.Punmia and Arora

Reference books:

1. Soil testing –lab manual & question bank by KVS Appa Rao, VCS Rao, university science press

Nptel Link: https://youtu.be/55RwyS0-ySo

E-Books: www.civilenggebooks.com

ENVIRONMENTAL ENGG LAB			
Subject code	18CVL58	Credit: 01	
Hours/Week	2 hours. (Practical)	SEE: 50 Marks	
Total hours: 28	CIE: 50 Marks	SEE: 3 hours	

Prerequisite: None

Course objectives:

- 1. To enable the student to acquire the knowledge in the following topics
- 2. Determination of Solids in Water / Sewage, turbidity, electrical conductivity, optimum alum dosage, Sieve Analysis of Filter Sand.
- 3. Determination of Chlorides. Alkalinity, Acidity. Total Hardness, COD, BOD, percentage of chlorine,
- 4. Determination of pH. Sulphate, Fluoride. Iron. Nitrate.
- 5. Determination of Total Count Test, Most Probable Number (MPN).

5. Determination of Total Count Test, Most Probable Number (MPN).	T
Modules	Teaching
	Hours
I Analysis of Physical Parameters:	
1. Determination of Solids in Water / Sewage – Total Solids, Suspended Solids,	
Dissolved Solids, Volatile Solids, Fixed Solids, Settleable Solids.	
2. Determination of Turbidity present in water.	
3. Determination of Electrical Conductivity of water.	
4. Determination of Optimum Alum Dosage.	
5. Sieve Analysis of Filter Sand.	
II Analysis of Chemical Parameters:	
1. Determination of Chlorides.	
2. Determination of Alkalinity, Acidity.	
3. Determination of Total Hardness, Calcium Hardness, Magnesium Hardness	
4. Determination of Dissolved Oxygen, Biochemical Oxygen Demand (BOD),	
Chemical Oxygen Demand (COD).	
5. Determination of Percentage of Chlorine in Bleaching Powder, Residual	
Chlorine, Chlorine Demand	
III Analysis of Chemical Parameters by Instrumental Methods:	
1. Determination of pH.	
2. Determination of Sulphate.	
3. Determination of Flouride.	
4. Determination of Iron.	
5. Determination of Nitrate.	
IV. Analysis of Biological Parameters:	
1.Determination of Total Count Test, Most Probable Number (MPN).	

Course	Course Outcomes: On completion of this course, students are able to:			
CO		BL		
CO1:	Demonstrate the concepts of concrete technology theory	C2		
	course through series of experiments.			
CO2:	Share the responsibilities in small teams of 4-5 members for	C2		
	conducting the experiments.			
CO3:	Perform the experiments and determination of Solids in Water, Sewage –	C3		
	Total Solids Suspended Solids, Dissolved Solids, Volatile Solids, Fixed			
	Solids, Settle able Solids, Turbidity present in water, Electrical Conductivity			
	of water, Optimum Alum Dosage, Filter Sand, Chlorides Alkalinity,			
	Acidity, Total Hardness, Calcium Hardness, Magnesium Hardness,			
	Dissolved Oxygen (DO), Biochemical Oxygen Demand(BOD), Chemical			
	Oxygen Demand(COD), Bleaching Powder, Residual Chlorine, Chlorine			
	Demand, p ^H , Sulphate, Fluoride, Iron, Nitrate, Total Count Test, Most			
	Probable Number (MPN).			
CO4	Analyze the data and interpret the results.	C2		
CO5	Prepare a well-organized laboratory report.	C2		

Any one of the above experiments is to be conducted in the examination by the student.

Text book:

Reference books:

- 1.Standard Methods for Examination of Water & Wastewater American Publication-Association of Water Pollution Control Federation, American Water Works Association, Washington DC (New Edition).
- 2. Manual of Water Wastewater Analysis NEERI Publication.
- 3. IS Standards: 2490-1974, 3360-1974, 3307-1974.
- 4. Chemistry for Environmental Engineering By Sawyer & Macarty.

Nptel Link: https://youtu.be/LeKqhMqEoKQ

E-Books: www.civilenggebooks.com

VI SEMESTER

STRUCTURAL ANALYSIS -II			
Subject code 18CV61 Credit: 04			
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 hours	

Prerequisite: Elements of civil engineering, Strength of materials & Structural analysis-

Course objectives:

To enable the student to acquire the knowledge in the following topics.

- 1. Analysis of continuous beams and portal frames by slope deflection, moment distribution, Kani's and Matrix methods of Analysis.
- 2. Analysis of pin jointed redundant frames.
- 3. Basics of structural dynamics and SDOF vibration.

Modules	Teaching
	Hours
Module I	
Slope Deflection method: Introduction, Sign convention, Development of	
slope deflection equations, Analysis of continuous beams (with and without	8 hours
translatory motion of joints), Analysis of portal frames (Only orthogonal	
frames with and without translatory motion of column heads	
Module-II	
Moment Distribution Method: Introduction, Definition of terms,	8 hours
Development of the method, Analysis of continuous beams (with & without	
translatory motion of joints), Analysis of non-sway type of frames Analysis	
of sway type of orthogonal portal frames	
Module-III	
Kani's Method of analysis: Introduction, Development of the method,	8 hours
Analysis of continuous beams (with & without translatory motion of joints),	
Analysis of non-sway portal frames, Simplified analysis of symmetrical	
portal & multistoried frames (only up to two stories) without lateral sway	
Analysis of portal frames with lateral sway (due to unsymmetrical vertical	
loading only)	
Module -IV	
Introduction To Matrix Methods: Structure Stiffness Method,	8 hours
Fundamentals of the Stiffness Method Equivalent joint loads Displacement,	
Transformation matrix, Member Stiffness matrix, Total stiffness or System	
stiffness matrix. Concept of Direct stiffness method and application to	
continuous beam (D.O.F.d" 3) Structure Flexibility Method Fundamentals	
of Flexibility Method Element Flexibility Matrix Principle of contra	
gradience, and force Transformation Matrix, Member flexibility Matrix.	
Application to continuous beam (Static Indeterminacy d" 3)	

Module-V		
Structural Dynamics: Introduction, Brief History of structural Dynamics		
Some Basic Definitions Vibration of Single degree of Freedom system,		
Undamped, Damped, Free Vibrations Logarithmic Decrement.		
Redundant Frames: Introduction Analysis of Trusses (Redundant up to		2 hours
second degree) Stresses due to error in length (Up to two members)		
Course Outcomes: On completion of this course, students are able to:		
CO		BL
CO1:	Analyze indeterminate beams and portal frames slope deflection,	C3
	moment distribution for gravity and lateral loading	
CO2:	Analyze indeterminate beams and portal frames by moment	C3
	distribution method for gravity and lateral loading	
CO3:	Analyze indeterminate beams and non-sway& sway (due to	C3
	unsymmetrical vertical loading only) type portal frames by kani's	
	method.	
CO4	Analyze indeterminate beams and portal frames by Matrix methods	C3
	of Analysis	
CO5	Analyze redundant pin jointed frames and explain the basics of	C3
	structural dynamics and SDOF vibration.	

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

Reference books:

- 1. Strength of materials Vol-II B. C. Punmia
- 2. Advanced structural analysis Ashok. K. Jain
- 3. Theory of structures S. Ramamrutham
- 4. Intermediate structural analysis C. K. Wang.
- 5. Matrix methods of Structural Analysis Pandit and Gupta
- 6. Vibrations, Dynamics and Structural Systems Madhujit Mukhopadhyay.
- 7. Structural Dynamics Mario Paz, CBS Publishers New Delhi.
- 8. Basic structural analysis C.S. Reddy

Nptel Link: https://youtu.be/oa5ojjGEUSw

E-Books: www.civilenggebooks.com

GEOTECHNICAL ENGG – II		
Subject code	18CV62	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Geotechnical Engineering – i

Course objectives:

to enable the student to acquire the knowledge in the following topics.

- 1. Understanding of the essential steps involved in a geotechnical site investigation.
- 2. Stresses induced under the different types of soils foundations due to the loads.
- 3. Determining the lateral earth pressures due different soil conditions.
- 4. Stability of earth slopes and estimating the seepage & exit gradient for various hydraulic structures.
- 5. Familiarize the students with the procedures used for: estimation of Bearing capacity and settlements under the foundation

Settlements under the foundation Modules	Teaching	
Wiodules		
MODULE-I	Hours	
Subsurface exploration: Importance, Exploration program, Methods of		
exploration: Boring, sounding tests, geophysical methods-Electrical resistivity		
and Seismic refraction methods. Types of samples- undisturbed, disturbed and	04 Hours	
representative samples. Samplers, sample disturbance, area ratio, Recovery ratio,		
clearance, Stabilization of boreholes. Typical boring log. Number and depth of		
borings for building and dams. Determination of ground water level by Hvorselev		
method	04 Hours	
Drainage and Dewatering: Introduction, ditches and sumps, well point system,		
shallow well system, deep well drainage, vacuum method forced flow, electro-		
osmosis method.		
MODULE-II		
Stress in soil: Bossinesg's and Westergaard's theories for concentrated, circular,	07.11	
rectangular, line and strip loads. Newmark's chart, Pressure bulb, contact pressure.	07 Hours	
MODULE-III		
Lateral earth pressure: Types of Earth pressure, Active and Passive earth		
pressures, Earth pressure coefficient and their range. Earth pressure theories-	8 Hours	
Rankine's and Coulomb's – assumptions and limitations, Graphical solutions for		
active earth pressure (cohesionless soil only) –Cullman's and Rebhann's methods,		
Lateral earth pressure in cohesive and cohesionless soils, Earth pressure		
distribution.		
MODULE-IV Flownets: Laplace equation, characteristics and uses of flow nets, Methods of	04 Hours.	
drawing flow nets for Dams and sheet piles. Estimating quantity of seepage and		
Exit gradient. Determination of phreatic line in earth dams with and without filter.		

	Stability of earth slopes: Types of slopes, causes and type of failure of Slopes.	05 Hours
Definition of factor of safety, Stability of finite and infinite slopes- Method of		
	slices, Friction Circle method, Fellineous method, Taylor's stability number.	
	MODULE-V	
	Bearing capacity: Definitions of ultimate, net and safe bearing capacities,	
	Allowable bearing pressure. Terzaghi's and Brinch Hansen's bearing capacity	08 Hours.
	equations-assumptions and limitations. Bearing capacity of footing subjected to	
	eccentric loading. Effect of ground water table on bearing capacity. Plate load	02 Hours.
	test, Standard penetration test, cone penetration test.	
	Foundation settlement: Concept, immediate, consolidation and secondary	
	settlements (no derivations), Tolerance BIS specifications for total and differential	
	settlements of footings and rafts.	
		ı I

Course outcomes:

04.1.114

On completion of the course, the student will have the ability to:

CO	Course Outcome (CO)	Blooms Level
CO1	Explain the methods of subsurface exploration and methods of	(C2)
	dewatering.	
CO2	Analyze the stresses in soil for different theories.	(C4)
CO3	Determine the lateral earth pressure for different cases. (C4)	(C4)
CO4	Explain the importance of flow nets and stability of earth slopes.	(C3)
CO5	Determine the bearing capacity of foundation and settlement of soil.	(C4)

Question paper pattern:

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text books:

1. V.N.S. Murthy, "Soil Mechanics and Foundation Engineering" Sai Tech Publishers, Chennai.

Bowles, J.E., "Foundation Analysis and Design" 5th Ed, McGraw Hill Pub.Co., New York (1996).

Reference Books:

- 1. Dr. C. Venkataramaiah, "Geotechnical Engineering" New age Publications.
- 2. Dr. Alam Singh, Modern Geotechnical engineering

Gopal Ranjan and A.S.R. Rao, "Basic & Applied Soil Mechanics" New age international (P) Ltd., New Delhi (2000).

Nptel link: https://youtu.be/UyWy38Cbvj0

E books and online course materials: www.civilenggbooks.com

TRANSPORTATION ENGG		
Subject code	18CV63	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: None

Course objectives: To enable students to acquire the knowledge in the fallowing topics

- Understand different modes of transportation systems, highway planning and highway alignment and survey.
- Design the horizontal and vertical alignments of roads.
- Understand the different pavement materials and design the thickness of different types of pavements.
- Understand about pavement construction and highway drainage system.
- Gain the skills of evaluating the highway economics by different methods and also introduce the students to highway financing and pavement maintenance.

Modules	
MODULE-I	Hours
Introduction : Importance of Transportation. Different modes of transportation,	03 Hours.
characteristics and comparison of different modes. Road development in India,	
Jayakar committee recommendations and implementation. Salient features of 1st,	
2 nd and 3 rd 20-year road development plan and problems on 3 rd 20 year road	
development plan only. Salient features of road development plan vision 2021.	
Present scenario of road development in India. NHDP, PMGSY, KSHIP and	
KRDCL projects	03 Hours.
Highway Planning: Road Types and classification, road patterns. Planning	os nouis.
surveys or fact-finding surveys, Master plan - saturation system of road planning,	
phasing road development programmed – problems on best alignment among	
alternate proposals and phasing.	02 11
Highway Alignment and Surveys: Ideal alignment, factors affecting alignment,	03 Hours
engineering surveys for new and realignment projects.	
MODULE-II Highway Coometrie Design Importance feature controlling the design of	
Highway Geometric Design: Importance, factors controlling the design of	
geometric elements. Highway cross section elements – pavement surface	08 Hours.
characteristics, camber, width of carriageway, shoulder width, formation width,	
right of way, typical cross section of roads. Design speed – sight distances -	
Design of horizontal alignment: radius of curve, superelevation, extra widening	
on curves, transition curves and vertical alignment –Summit and valley curves.	
Numerical problems on above (No derivation of formulae only brief description)	

MODULE-III Pavement Materials: Properties and requirements of subgrade soils, HRB and IS soil classification. Determination of CBR and Modulus of subgrade reaction of soil. Properties and requirements of road aggregates, Bitumen – Tar – Emulsion – Cutback (Tests on aggregates and bitumen not included). Numerical problems on above.	03 Hours.
Pavement Design: Types of pavements – Design factors, Determination of ESWL by equal stress criteria using graphical method only, EWL factors and numerical problems. IRC method of flexible pavement design based on CSA method using IRC: 37 – 2001. Stresses in rigid pavement and design of rigid pavement as per IRC: 58 – 2002 excluding design of joints.	06 Hours
MODULE-IV	
Pavement Construction: Specifications, construction steps and quality control	
tests for Granular sub base course, WBM base course. Brief description on	
bituminous constructions such as prime coat, tack coat, bituminous binder course	04 Hours.
(BM and DBM), common types of bituminous surfacing courses such as surface	
dressing, premixed carpet (PMC) and bituminous concrete. Construction steps for	
cement concrete pavements.	
Surface and Subsurface drainage system for road pavements, types, functions and basic design principles	04 Hours.
MODULE-V	
Highway Economics and Financing: Highway user benefits –VOC using charts	04 Hours.
only - Highway costs - Economic analysis by annual cost method and benefit	
cost ratio methods. Numerical problems on above. Highway financing – BOT	
and BOOT concepts.	
Pavement Maintenance: Pavement failures, cases. Maintenance of highways.	04 Hours.
Principles of pavement evaluation – functional and structural evaluation.	OT HOUIS.
Course outcomes:	

On completion of the course, the student will have the ability to:

CO#	Course Outcome (CO)	Blooms
CO1	Understand about the road development in India, Highway planning &highway alignment	Level (C2)
CO2	Design highway geometries	(C5)
CO3	Explain the different pavement materials and design the thicknesses of different types of pavements	(C2)
CO4	Understand about pavement construction and highway drainage system	(C2)
CO5	Determine the highway economic cost by different methods and understand about highway financing and pavement maintenance	(C4)

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text books:

- 1. Khanna, S.K. and Justo, C.E.G., "Highway Engineering" Nem Chand and Bros, Roorkee 8th Edition (2003).
- 2. Kadiyali, L.R., "Highway Engineering" Khanna Publishers, New Delhi.
- 3. Subramanyam, K.P., "Transportations Engineering –I" Scitech Publications, Chennai.

Rao, G.V., "Principles of Transportation and Highway Engineering," McGraw – Hill Publishing Company Limited, New Delhi.

Reference Books:

- 1. IRC: 37-2001, IRC: 58-2002 and other relevant IRC codes
- 2. MoRT&H-2001, "Specifications for Roads and Bridges" New Delhi (2001)

Partha ChakraoBorthy and Animesh Das, "Principles of Transportation Engineering", Prentice-Hall of India Private Limited, New Delhi (2003)

E books and online course materials: www.civilenggbooks.com

Nptel Link: https://youtu.be/5zKC_aq4ypM

Elective-I

STRUCTURAL DYNAMICS		
Subject code	18CV641	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Knowledge of basic structural engineering subjects, such as SOM, SA-ISA-II & Matrix methods of structural analysis.

Course objectives:

To enable students to acquire the knowledge in the fallowing topics:

- 1. To attain the knowledge of effect of vibrations & earthquake force on the structures.
- 2. To attain the knowledge of rotating unbalance, Duhamel's integral, DLF, SDOF.
- 3. To attain the knowledge of free vibration of MDOF, natural frequencies, shear buildings modeled as MDOF.
- 4. To attain the knowledge of forced vibration of MDOF, response of shear building to base motion, base isolation.
- 5. To attain the knowledge of continuous systems, dynamic analysis of beams, lumped mass and consistent mass formulation

Modules	Teaching Hours	
Module I		
Introduction to structural dynamics, Brief history of vibration and Earthquakes, Major earthquakes, Earthquakes zones, some basic definitions, Vibration of single degree of freedom system, undamped, damped, free vibrations, logarithmic decrement. Forced vibrations of single degree freedom systems, response of undamped and damped systems subjected to harmonic loading.	8 hours	
Module-II		
Rotation unbalance, reciprocating unbalance. Duhamel's integral, response due to general system of loading, dynamic load factor, response spectrum, response of SDOF subjected to harmonic base excitation, vibration isolation.	7 hours	
Module-III		
Free vibration of multi degree of freedom systems, natural frequencies, normal modes, orthogonality property of normal modes, eigen values. Shear buildings modeled as multi degree of freedom systems, free vibrations, natural frequencies.		
Module -IV		
Forced vibration motion of shear buildings, modal super position method, and response of shear buildings to base motion, harmonic forced excitation. Damped motion of shear buildings, equations for damped shear buildings, uncoupled damped equations, conditions for damping uncoupling		
Module-V		
Dynamic analysis of beams stiffness matrices lumped mass and consistent mass formulation equations of motion.		
Course Outcomes: On completion of this course, students are able to:		
СО	BL	
CO1: Explain the terminology associated with earthquake and the basic concepts of SDOF	C2	

	System and its response to harmonic loads.	
CO2:	Explain Duhamel's integral vibration isolation and analyze SDOF subjected to general system of load, harmonic base excitation	C2
CO3:	Analyze MDOF system subjected to free vibration,	C3
CO4	Determine the response of shear building to forced vibration, base motion and Harmonic forced excitation.	
CO5	Analyze beams by dynamic approach using technique of lumped mass and consistent mass formulation.	C3

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

- 1. Vibrations, structural dynamics- M. Mukhopadhyay : Oxford IBH
- 2. Structural Dynamics- Mario Paz: CBS publishers.
- 3. Structural Dynamics- Anil Chopra: PHI Publishers.

Reference books:

Structural Dynamics- Clough &Penzen: TMH

Nptel Link: https://youtu.be/0KiYC8QQOiM

DESIGN OF MASONRY STRUCTURES			
Subject code 18CV642 Credit: 03			
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 hours	

Prerequisite: Elements of civil engineering and Strength of material

Course objectives:

This course will enable the students to

- 1. Understand properties of masonry units, strength and factors affecting strength.
- 2. Understand design criteria of various types of wall subjected to different load system.
- 3. Impart the culture of following the codes for strength, serviceability and durability as an ethics.
- 4. Provide knowledge in analysis and design of masonry elements

Modules	Teaching Hours
MODULE-I	
Masonry units, materials, types & masonry construction: Brick, stone and	
block masonry units -strength, modulus of elasticity and water absorption of	10 Hours
masonry materials – classification and properties of mortars, selection of mortars.	
Defects and errors in masonry construction, cracks in masonry, types, reasons for	
cracking, methods of avoiding cracks.	
Strength and stability: Strength and Stability of concentrically loaded masonry	
walls, effect of unit strength, mortar strength, joint thickness, rate of absorption,	
effect of curing, effect of ageing, workmanship, Compressive strength formulae	
based on elastic theory and empirical formulae.	
MODULE-II	
Permissible stresses : Types of walls, permissible compressive stress, stress	7 Hours
reduction and shape modification factors, increase in permissible stresses for	
eccentric vertical and lateral loads, permissible tensile stress and shear stresses.	
Design Considerations: Effective height of walls and columns, openings in walls,	
effective length, effective thickness, slenderness ratio, eccentricity, load	
dispersion, arching action in lintels. Problems on design considerations for solid	
walls, cavity walls, wall with pillars.	
MODULE-III	
Load considerations and design of Masonry subjected to axial loads: Design	
criteria, design examples of walls under UDL, solid walls, cavity walls, solid wall	9 Hours
supported at the ends by cross wall, walls with piers.	
MODULE-IV	
Design of walls subjected to concentrated axial loads: Solid walls, cavity walls,	8 Hours
solid wall supported at the ends by cross wall, walls with piers, design of wall with	
openings.	
Design of walls subjected to eccentric loads: Design criteria – stress distribution	
under eccentric loads - problems on eccentrically loaded solid walls, cavity walls,	
walls with piers.	
MODULE-V	
Design of Laterally and transversely loaded walls: Design criteria, design of	8 Hours
solid wall under wind loading, design of shear wall – design of compound walls.	
Introduction to reinforced brick masonry, lintels and slabs. In-filled frames: Types	

– mode	es of failures – design criteria of masonry retaining walls.	
00		Dr
CO	Course Outcome (CO)	BL
CO1	Explain different types of masonry construction such as brick, stone, reinforced walls in composite action and identify the loads on masonry walls. Summarize various formulae's for finding compressive strength of masonry units.	C2
CO2	Explain permissible stresses and design criteria as per IS: 1905 and SP-20.	C2
CO3	Consider the loads. and design of walls under udl, solid walls, cavity walls	C2
CO4	design of Masonry walls subjected to axial loads and eccentric loads	C4
CO5	Design of Laterally and transversely loaded walls	C4

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module.

Text books:

1. Structural Masonry- Henry, A.W. Macmillan Education Ltd., 1990.

Reference Books:

- 1. **Design of masonry structures** Sinha B.P. Davies S.R.: E&FN spon 1997
- 2. IS 1905–1987 "Code of practice for structural use of un-reinforced masonry-(3rdrevision) BIS, New Delhi.
- 3. SP 20 (S&T) 1991, "Hand book on masonry design and construction (1st revision) BIS, New Delhi

Nptel Link: https://youtu.be/E-rfU6n2rCw

E books and online course materials: www.civilenggbooks.com

ADVANCED SURVEYING		
Subject code	18CV643	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Survey –I and Survey-II

Course objectives:

to enable the student to acquire the knowledge in the following topics.

- 1. Field astronomy and determination of meridians, solar time and day
- 2. Classification of errors and determining precision of surveying applications
- 3.Basics of modern surveying instrument total station
- 4. Hydro graphic surveying application and setting out of major projects in civil engineering fields.

neus.		
Modules	Teaching Hours	
Module I		
Field astronomy: Definitions, Co-ordinate's system, the terrestrial latitude an	d l	
longitude, spherical triangle and spherical trigonometry. Astronomical triangle	e 8 hours	
Napier's rule, relationship between co-ordinates.		
Module-II		
Time: Sidereal time, day and year – solar time and day – Greenwich mean time		
standard time. Meridian and azimuth – their determination -latitude and it	S	
determination		
Module-III	~ ·	
Theory of errors and triangulation adjustment: Errors and classification of errors, Precision and accuracy, Laws ofweight and accidental errors		
Probability: Probability distribution function and density function	4 hours	
-normal distribution. RMS error-measure of precision. Rejection of observations	-	
principles of least squares-Normal equations		
Module -IV		
Electronic distance measurement (EDM): Introduction, Measurement		
principal EDM, Different wave length bands used by EDM, Electro Magneti		
(EM) Waves, Phase comparison and modulation. Instruments –Geodimeter	-	
Tellurimeter – Distomat. Introduction to GPS Total Station.		
Module-V Hydrographic surveying: Methods of sounding. Instruments. Three-point	t 4 hours	
Hydrographic surveying: Methods of sounding. Instruments. Three-poir problem. Tidal and Stream discharge measurement.	t 4 Hours	
Setting out works: Introduction. Setting out of buildings, culverts, bridges	5 hours	
pipeline and sewers, tunnels.	, 3 nours	
Course Outcomes: On completion of this course, students are able to:	<u> </u>	
r,		
СО	BL	
CO1: Understand basic concepts of astronomical field survey	C2	
CO2: Interpret and solve problems in determining meridians,	C2	
solar time and day		
CO3: Understand and interpret classification of errors and	C2	

	determine precision in surveying application	
CO4	Demonstrate understanding of modern surveying	C3
	instruments like total station	
CO5	Understand and solve problems in hydrographic surveying	C2
	and in setting out various engineering infrastructures workson ground	

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

- 1. Surveying Vol I, II& III- B.C. Punmia-Lakshmi Publications, New Delhi.
- 2. Surveying Vol I & II- Duggal S.K.-Tata Mc Graw-Hill publishing Co.,
- 3. Surveying Levelling Part I & II Kanitkar T. P & Kulkarni S.V- Pune Vidhyarthi Gruha Prakashana.
- 4. Advanced surveying Sateesh Gopi, R Sathkumar and N Madhu 2nd edition, Dorling kinderley (India) pvt ltd, Pearson Education.

Reference books:

- 1. Introduction to Surveying-James, Anderson & Edward, M. Mikhail-MC-Graw -Hill Book Co., 1985.
- 2. Analysis and Survey measurements-M. Mikhail and Gracie, G. Van Nostrand Reinhold Co., (NY)-1980.
- 3. Plane and Geodetic Surveying for Engineers-David Clark Vol I & II-CBS publishers and distributors, New Delhi.

Nptel Link: https://youtu.be/TqbYlHIzYJs

ELECTIVE-II

THEORY OF ELASTICITY		
Subject code	18CV651	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Strength of materials, Structural analysis –I, and Structural analysis –II

Course objectives:

- 1.Generalized Hooke's law and strain-displacement relations, Equations of equilibrium and compatibility for two dimensional problems in rectangular & polar co ordinates
- 2.Plane stress and plane strain problems, measurement of surface strains and strain rosettes, stalk polynomial.
- 3. Analysis of two-dimensional problems in rectangular and polar coordinates

	Modules	Teaching Hours
and strai	Module I ion to Mathematical theory of elasticity, definition of continuum, stress in at a. point, constitutive laws, Generalized Hook's Law, Strain nent relations.	7 hours
	Module-II tial equations of equilibrium, boundary conditions, compatibility s, Airy's stress function, problems, Stress polynomials, St. Venant's	8 hours
strains, rectangul	Module-III ess and plane strain, Principal stresses and strains, measurement of surface strain rosettes, analytical method. Two-dimensional problems in ar coordinates, bending of a cantilever beam subjected to end load, effect deformation in beams, simply supported beam subjected to UDL.	10 hours
	Module -IV ensional problems in polar coordinates, strain- displacement relations, s of equilibrium, compatibility equation, stress function.	9 hours
Module-V Stress distribution symmetrical about an axis, Rotating discs, Lame's problem. Effect of circular hole in an infinite plate, stress concentration factors.		8 hours
Course Outcomes: On completion of this course, students are able to:		
CO1:	Describe stress and strain at a point, Generalized Hooke's law and strain displacement relations	BL C2
CO2:	Explain equilibrium and compatibility equation for the two-dimensional rectangular coordinate system & solve problems on stress polynomials	C2
CO3:	Explain surface strain measurement technique using strain rosettes and solve problems on cantilever and section beams.	C2
CO4	Solve two dimensional problems in polar coordinate system using the concepts of equilibrium and compatibility equation	C3
CO5	Develop the for-stress distribution for the call of rotator discs	C3

and effect of circular hole in an infinite rate

Question paper pattern:

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

1. Timoshenko. S.P. and Goodier.J.N. – "Theory of Elasticity", International Students' Edition,

McGraw Hill Book Co. Inc., New Delhi.

2. Wang. P.C.- "Applied Elasticity"

Reference books:

- **1.** Valliappan. C- "Continuum Mechanics Fundamentals", Oxford and IBH Publishing Co. Ltd., New Delhi.
- 2. Srinath.L.S. "Advanced Mechanics of Solids", Tata McGraw Hill Publications Co. Ltd., New Delhi.
- 3. Venkataraman and Patel- "Structural Mechanics with Introduction to Elasticity and Plasticity",

McGraw Hill Book Inc., New York

Nptel Link: https://youtu.be/eICv1p8WjgI

BUILDING SCIENCE AND ENGG		
Subject code	18CV652	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: None

Course objectives:

- 1.Learn the importance of sanitation, domestic water supply, and plumbing and fire services.
- 2. Understand the concepts of heat, ventilation and air conditioning.
- 3. Develop technical and practical knowledge in Building Services.

	Modules	Teaching Hours
	Module I	
Introd	uction, Climate: Climatic factors, Classification of tropical climates, Site	9 hours
climate	e, Microclimate of human settlements. Comfort Thermal comfort factors,	
Comfo	rt indices	
	Module-II	
Princip	ples of Thermal Design: Thermal quantities, Heat exchange in buildings,	8 hours
Periodi	c heat flow. Mechanical means of thermal control.	
	Module-III	
Means	of Thermal Control: Mechanical and structural means of thermal control,	9 hours
Moistu	re control in buildings, Ventilation requirements for health.	
Means	of Thermal Control: Mechanism and estimation of natural ventilation,	
Airflov	v patterns in buildings.	
	Module -IV	
Noise	& Noise Control: Propagation of sound, Sound insulation, absorption &	8 hours
transmi	ission, reverberation, Design of floor, Roofing & walling system for sound	
absorpt	tion and insulation, Design of auditorium, Noise control in buildings.	
	Module-V	
Light of	& Lighting: Day lighting, Design of fenestration in buildings for day light	8 hours
of vari	ous types, Illumination design, Luminaries and their characteristics, Code	
require	ments.	
Course	e Outcomes: On completion of this course, students are able to:	
CO		BL
CO1:	Describe the basics of house plumbing and waste water collection and	C2
	disposal.	
CO2:	Discuss the safety and guidelines with respect to fire safety.	C3
CO3:	Describe the issues with respect to quantity of water, rain water harvesting	C3
	and roof top harvesting.	
CO4	Understand and implement the requirements of thermal comfort in	C4
	buildings.	
CO5	Design of Lighting arrangements of the building	C5
<u> </u>		

Question paper pattern:

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Reference books:

1. National Building Code.

- 2. Charangith shah, Water supply and sanitary engineering, Galgotia publishers.
- 3. Kamala & D L Kanth Rao, Environmental Engineering, Tata McGraw Hill publishing co. Ltd.
- 4. Technical teachers Training Institute (Madras), Environmental Engineering, Tata McGraw Hill publishing Co. Ltd.
- 5. M. David Egan, Concepts in Building Fire Safety.
- 6. O. H. Koenigsberger, "Manual of Tropical Housing and Building", Longman Group United Kingdom.
- 7. V. K. Jain, Fire Safety in Building 2edition, New Age International Publishers.
- 8. E. G. Butcher, Smoke control in Fire-safety Design.
- 9. E. R. Ambrose, Heat pumps and Electric Heating, John and Wiley and Sons Inc, New York. 10. Handbook for Building Engineers in Metric systems, NBC, New Delhi

Nptel Link: https://youtu.be/nRanL9sXHhc

MAT LAB AND APPLICATION		
Subject code	18CV653	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: None

Course objectives:

- 1. To Understand basic MATLAB functions
- 2. To be able to differentiation and integration and solve differential equations using MATLAB
- 3. To be able to carry out numerical computations on transformations.
- 4. To be able to understand Geospatial tool box and its applications

Module I Introduction to MATLAB programming, approximations and errors; Basics of MATLAB programming - Array operations in MATLAB - Loops and execution control - vector operation: Creation, dot product, work with vectors: create, topology, union and intersection, reselection, buffering, generate suitability map - Working with files: Scripts and Functions - Plotting and program output - Defining errors and precision in numerical methods - Truncation and round-off errors-Error propagation, Global and local truncation errors Module-II Differentiation and integration: Numerical Differentiation in single variables - Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables. Module-IV	hing
Introduction to MATLAB programming, approximations and errors; Basics of MATLAB programming - Array operations in MATLAB - Loops and execution control - vector operation: Creation, dot product, work with vectors: create, topology, union and intersection, reselection, buffering, generate suitability map - Working with files: Scripts and Functions - Plotting and program output - Defining errors and precision in numerical methods - Truncation and round-off errors-Error propagation, Global and local truncation errors Module-II	urs
of MATLAB programming - Array operations in MATLAB - Loops and execution control - vector operation: Creation, dot product, work with vectors: create, topology, union and intersection, reselection, buffering, generate suitability map - Working with files: Scripts and Functions - Plotting and program output - Defining errors and precision in numerical methods - Truncation and round-off errors-Error propagation, Global and local truncation errors Module-II	
control - vector operation: Creation, dot product, work with vectors: create, topology, union and intersection, reselection, buffering, generate suitability map - Working with files: Scripts and Functions - Plotting and program output - Defining errors and precision in numerical methods - Truncation and round-off errors-Error propagation, Global and local truncation errors **Module-II** Differentiation and integration: Numerical Differentiation in single variable - Numerical differentiation: Higher derivatives- Differentiation in multiple variables - Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method **Module-III** Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
topology, union and intersection, reselection, buffering, generate suitability map - Working with files: Scripts and Functions - Plotting and program output - Defining errors and precision in numerical methods - Truncation and round-off errors-Error propagation, Global and local truncation errors Module-II	ırs
Working with files: Scripts and Functions - Plotting and program output - Defining errors and precision in numerical methods - Truncation and round-off errors-Error propagation, Global and local truncation errors Module-II Differentiation and integration: Numerical Differentiation in single variable - Numerical differentiation: Higher derivatives- Differentiation in multiple variables - Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
errors and precision in numerical methods - Truncation and round-off errors-Error propagation, Global and local truncation errors Module-II Differentiation and integration: Numerical Differentiation in single variable - Numerical differentiation: Higher derivatives- Differentiation in multiple variables - Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton- Raphson in single variables.	
Module-II Differentiation and integration: Numerical Differentiation in single variable - Numerical differentiation: Higher derivatives- Differentiation in multiple variables - Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in multiple variables.	
Module-II Differentiation and integration: Numerical Differentiation in single variable - Numerical differentiation: Higher derivatives- Differentiation in multiple variables - Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
Numerical differentiation: Numerical Differentiation in single variable - Numerical differentiation: Higher derivatives- Differentiation in multiple variables - Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
Numerical differentiation: Higher derivatives- Differentiation in multiple variables - Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton- Raphson in single variables.	
- Newton-Cotes integration formulae - multi-step application of Trapezoidal rule - MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	ırs
MATLAB functions for integration - Introduction to ODEs; Implicit and explicit Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
Euler's methods - Second-Order Runge-Kutta Methods - MATLAB ode45 algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
algorithm in single variable - Higher order Runge-Kutta methods - Error analysis of Runge-Kutta method Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss 8 hour Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss 8 hour Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
Module-III Linear and non-linear equations; Linear algebra in MATLAB - Gauss 8 hour Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
Linear and non-linear equations; Linear algebra in MATLAB - Gauss Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variables.	
Elimination - LU decomposition and partial pivoting - Iterative methods: Gauss Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variable - MATLAB function solve in single and multiple variables - Newton-Raphson in multiple variables.	
Siedel - Special Matrices: Tri-diagonal matrix algorithm - Nonlinear equations in single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton- Raphson in single variable - MATLAB function solve in single and multiple variables - Newton-Raphson in multiple variables.	ırs
single variable - MATLAB function zero in single variable - Fixed-point iteration in single variable - Newton-Raphson in single variable - MATLAB function solve in single and multiple variables - Newton-Raphson in multiple variables.	
in single variable - Newton- Raphson in single variable - MATLAB function solve in single and multiple variables - Newton-Raphson in multiple variables.	
in single and multiple variables - Newton-Raphson in multiple variables.	
Module -1 v	
Algebra and transforms: Solving quadratic equation, factorization, calculus: 9 hour	ırc
exploring limits, use of octaves, Differential: solving DE, maxima and minima,	113
exponential, logarithmic and trigonometric derivatives, Integral: finding indefinite	
and definite integral, transform: Laplace and inverse Laplace transform, Fourier	
and inverse Fourier transform, working with lessons: derive slope map, create	
watershed, find landslide vulnerability	
Module-V	
Data visualization and modelling: Graph elements; color, theme, type, title and 9 hour	ırs
labels, drawing multiple functions, generating sub plots, drawing bar chart,	
contour, 3D plots, move elements, trace movement, work with plotting: regression	

analysis	s and presentation, contour map from DEM- Geospatial tool box	
implem	entation	
Course	Outcomes: On completion of this course, students are able to:	
CO		BL
CO1:	Perform basic MATLAB functions	C2
CO2:	solve mathematical problems related to differentiation and integration	C3
CO3:	solve problems related to Linear and Non-Linear equations to correct the	C4
	same to geospatial algorithms	
CO4	solve transformations of geospatial problems	C4
CO5	Develop skills in geospatial tool box and mapmaking	C5

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

- 1. Holly Moore, "MATLAB for Engineers" Third Edition-Pearson Publications
- **2.** Stephen J. Chapman, "MATLAB Programming for Engineers" Fourth Edition –Thomson learning.
- 3. Holly Moore, "MATLAB for Engineers" Third Edition-Pearson Publications
- **4.** Stephen J. Chapman, "MATLAB Programming for Engineers" Fourth Edition –Thomson learning.

Reference books:

- 1. FausettL.V.(2007) Applied Numerical Analysis Using MATLAB,2ndEd., Pearson Education.
- 2. MATLAB: An Introduction with Applications, by Amos Gilat, 2nd edition, Wiley, 2004
- 3. Hahn B., and D. Valentine, 2013. Essential Matlab for Engineers and Scientists:
- 4. Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers, by Rudra Pratap, OUPUSA,2005.
- 5. Programming and Engineering Computing with MATLAB 2018 by Huei-Huang Lee SDC Publications, 2018.
- 6. Fausett L.V. (2007) Applied Numerical Analysis Using MATLAB, 2nd Ed Pearson Education.
- 7. MATLAB: An Introduction with Applications, by Amos Gilat, 2nd edition, Wiley, 2004
- 8. Hahn B., and D. Valentine, 2013. Essential Matlab for Engineers and Scientists: 5th Edition, Academic Press.
- 9. Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers, by Rudra Pratap, OUPUSA,2005
- 10. Programming and Engineering Computing with MATLAB 2018 by Huei-Huang Lee, SDC Publications, 2018.

Nptel Link: https://youtu.be/luEOMyGuulg

ECOLOGY AND ENVIRONMENT					
Subject code 18CVOE661 Credit: 03					
Hours/Week	3 hours. (Theory)	SEE: 50 Marks			
Total hours: 42	CIE: 50 Marks	SEE: 3 hours			

Prerequisite: Environmental studies

Course objectives:

To enable the student to acquire knowledge in the following topics:

- 1. Componentsofenvironmentandtheirinteractionsandsubdivisionsofecology.
- 2. Structural and functional characteristics of an ecosystem, principles related to energy and concepts of productivity.
- 3. Bio-geochemical cycles and pathways of matter in the biosphere.
- 4. Fresh water and marine water eco system.
- 5. Effects of pollution on human health, aquatic and terrestrial ecosystems and global environmental problems.

environmentai problems.	Teaching	
Modules		
	Hours	
Module I		
Introduction: Environment, definition, components of environment and its interaction. Ecology – Definition, Sub divisions of Ecology.	4 hours	
Concepts of ecosystem: Structural and functional characteristics of an ecosystem. Balanced ecosystem, biological control, production and decomposition in nature.	6 hours	
Module-II		
Principles and concepts pertaining energy in ecological system: Fundamental principles related to energy, energy environment, laws of thermodynamics, energy system. Pathways of energy in the biosphere; Concept of productivity – its	7 hours	
measurement; Food chains/ Food webs – trophic levels, trophic structure Bio geo chemical cycles: Concept of bio-geochemical cycles –significance, pathways of matter in the biosphere, C, N, S & P cycles	7 hours	
Module-III		
Fresh water ecology: Fresh water environment types and limiting factors, classification of fresh water organisms, fresh water biota (flora & fauna), zonation in streams, Eutrophication of lakes.		
Marine ecology: Marine environment, marine biota, zonation in the area (case study), estuarine ecology.	5 hours	
Module -IV		
Pollution and environmental health: Types of pollution (Air, Water and Land) effects on human health, effects on aquatic and terrestrial system.		
Module-V		
Global environment problems: Acid rain, ozone layer depletion, greenhouse	3 hours	
effect, Global warming.		
Course Outcomes: On completion of this course, students are able to:		
CO	BL	
CO1: Identify the components of environment and the sub-divisions of ecology	C1	
CO2: Describe the characteristics of an ecosystem, energy system and the concepts bio-geochemical cycles		

CO3:	Understand the fresh and marine water ecology,	C2
CO4	Understand effects of pollution on human health, and on ecosystems.	C2
CO5	Understand the global environment problems. And its causes and	C1, C2
	effect so faci drain, ozone layer depletion, greenhouse effect, global	
	warming.	

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

- 1. Modi, P.N., "Irrigation Water Resources and Water Power Engineering". Standard Book House, New Delhi. 10th Edition, 2019.
- 2. Raghunath, H.M., "Groundwater", 3rd Edition, New Age International Publishers, New Delhi, 2007.
- 3. Krishnan, M.S., "Geology of India & Burma". CBS publishers, New Delhi, 2017.
- 4. P. Jaya Rami Reddy, "A Textbook of Hydrology", University Science Press, New Delhi, 2011.
- 5. M N Rao and H V N Rao, "Air pollution", McGraw Hill Publications, 2017.
- 6. Krishnamurthy K.V., "An advanced textbook of Biodiversity- Principle & Practices." Oxford and IBH publications, New Delhi. 2004.

Reference books:

- 1. Odum, E.P., "Fundamentals of Ecology", W.B sounders, Philadelphia, USA, 1971
- 2. Singh J.S, Singh S.P & Gupta, S.R. "Ecology, environment and resource conservation", Anamaya publications, 2006.
- 3. Edmond A. Mathez & Jason E. Smerdon, "Climate Change: The science of Global warming and our energy feature", Columbia University Press, 2009.
- 4. National Council of Applied Economic Research, "Economic Impact of Interlinking of Rivers Program", Revised Final Report, April 2008.
- 5. http://nwda.gov.in/content.
- 6. Madhav Gadagil, "Biodiversity and India's degraded lands", Indian Academy of Sciences, Volume 22- No 2/3, http://www.jstor.org/pss/4314063

Nptel Link: https://youtu.be/ZngDF4jfRdw

REMOTE SENSING AND GIS					
Subject code 18CVOE662 Credit: 03					
Hours/Week	3 hours. (Theory)	SEE: 50 Marks			
Total hours: 42	CIE: 50 Marks	SEE: 3 hours			

Prerequisite: Survey-II

Course objectives:

To enable the students to acquire the knowledge in following topics

- 1.Basic Remote Sensing.
- 2. Concept of geographical Information.
- 3.GIS data models.
- 4. Digitizing, Editing & Structuring map data.
- 5.GPS (Basic knowledge of Global Positioning system).

Modules	Teaching Hours
Module I	Hours
Remote sensing: Introduction—Historical sketch of Remote sensing, Idealized remote sensing-Basic principles of remote sensing-Electromagnetic energy Electromagnetic spectrum— Wave length regions and	8 hours
theirapplicationinremotesensing-characteristicsofsolarradiation-Basicradiation and atmosphere-interaction of Eradiation-with earth surface-remotesensingobservationplatform-sensors-ApplicationofRemotesensing.	
Module-II Geographic Information: system concepts and spatial models. Introduction, Spatial information, temporal information, conceptual models of spatial information, representation of geographic information.	2 hours
GIS Functionality —Introduction, data acquisition, preliminary data processing, data storage and retrieval, spatial search and analysis, graphics and interaction.	3 hours
Computer fundamentals of GIS and Data storage: Fundamentals of computers vector/raster storage character files and binary files, file organization, linked lists, chains, trees.	3 hours
Module-III	
Coordinate systems and map projection: Rectangular polar and spherical coordinates, types of map projections, choosing a map projection.	3 hours
GIS Data models and structures —Cartographic map model, GEO-relation model, vector/raster methods, non-spatial data base structure viz., hierarchal network, relational structures.	3 hours
Digitizing Editing and structuring map data –Entering the spatial data (digitizing), the non-spatial, associated attributes, linking spatial and non-spatial data, use of digitizers and scanners of different types.	3 hours
Module -IV	
Data quality and sources of error –Sources of errors in GIS data, obvious sources, natural variations and the processing errors and accuracy.	5 hours
Principles of Spatial data: access and search, regular and object orient edde composition, introduction to spatial data analysis, and overlay analysis, raster analysis, network analysis in GIS.	4 hours

	Module-V			
GIS ar	nd remote sensing data integration techniques: in spatial decision	4 hours		
support	system land suitability and multi criteria evaluation, rule-based			
systems	s, network analysis, special interaction modeling, Virtual GIS.			
Global	positioning system: Hyper spectral remote sensing, Dip techniques,	4 hours		
hardwa	re and software requirements for GIS, overview of GIS software.			
Course	Course Outcomes: On completion of this course, students are able to:			
CO		BL		
CO1:	Define the basics principles of Remote sensing, sensors etc.	C2		
CO2:	Classify RS and GIS software, and also about GPS device.	C2		
CO3:	G 100	C2		
	Contrast different areas with the help of RS and GIS	C2		
CO4	Apply RS and GIS for urban application and water resources etc	C2, C3		

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

- 1. Narayan Panigrahi, "Geographical Information Science", and ISBN 10: 8173716285 / ISBN 13: 9788173716287, University Press2008.
- 2. Basudeb Bhatta, "Remote sensing and GIS", ISBN:9780198072393, Oxford University Press2011
- 3. Kang T surg Chang, "Introduction to Geographic Information System". Tata McGraw Hill Education Private Limited 2015.
- 4. Lilles and, Kiefer, Chipman, "Remote Sensing and Image Interpretation", Wiley2011.

Reference books:

- 1. Chor Pang Lo and Albert K.W Yeung, "Concepts & Techniques of GIS", PHI,2006
- 2. John R. Jensen, "Remote sensing of the environment", an earth resources perspective—2nd edition—by Pearson Education2007.
- 3. Anji Reddy M., "Remote sensing and Geographical information system", B. S. Publications 2008.
- 4. Peter A. Burrough, Rachael A. McDonnell, and Christopher D. Lloyd, "Principals of Geo physical Information system", Oxford Publications 2004.
- 5. S Kumar, "Basics of remote sensing & GIS", Laxmi publications 2005.

Nptel Link: https://youtu.be/-4D1-eSEWXw

NUMERICAL METHODS IN CIVIL ENGG					
Subject code 18CVOE663 Credit: 03					
Hours/week	3 hours. (theory)	See: 50 marks			
Total hours: 42	CIE: 50 Marks	SEE: 3 hours			

Prerequisite: mathematics-III, mathematics- IV

Course objectives:

To enable students to acquire the knowledge in the fallowing topics:

- 1. To understand and apply a suitable technique for solution simultaneous equations.
- 2. To understand and apply a suitable non-linear differentiation equation method among the given, for the solution of beam problems.
- 3. Application of different methods for non-linear algebraic and transcendental equations.
- 4. To understand numerical integration method to be applied for beam problems.
- 5. To understand and apply finite difference techniques for beams and columns to and slopes, deflections, torsion.

deflections, torsion. Modules	Topohina
Wiodules	Teaching Hours
Module I	110018
Introduction: Historical development of Numerical techniques, role n research and design in the field of civil engineering. Numerical solutions of simultaneous equations for Engg Problems. Development of Algorithms for	1 Hours
(i) Cramer'srule	
 (ii) Gaussian elimination method (iii) Gauss-Siedel iteration method (iv) Choleskyde composition method (v) Matrix inversion method Eigen value problems in civil engineering 	9 Hours
Module-II	
Solution of non-linear first order differential equation- applicable to beam	
problems.	9 Hours
(i) Euler's method	
(ii) Taylor's series	
(iii) Runge-Kutta 2nd and 4th order methods Gaussian quadrature method	
Module-III	
Solution for non-linear and algebraic and transcendental equation	6 Hours
(i) Newton-Raphson method	
(ii) Bisection method	
(iii) Gershoff's theory	
Numerical integration	3 Hours
Numerical method for solving simple beam problems	
Module -IV	
Finite difference techniques:	
(i)Slope and deflection of cantilever beam, simply supported beam, fixed beam,	8 Hours
propped beam	
(ii)Beams of elastic foundation	
Module-V	
Finite Element Techniques:	

1.	Buckling load from column	6 Hours
2.	Torsion problem of non-regular section	
3.	Membrane problem	
Cours	se Outcomes: On completion of this course, students are able to:	
Co		Bl
CO1	Determine the solutions simultaneous for equations and develop algorithm	C2
	for numerical technique such as Cramer's rule, gaussian elimination	
	method, gauss seidel, Iteration method, cholesky decomposition method	
	and eigen value problems in civil engineering	
CO2	Solve nonlinear first order differential equations especially applicable to	C3
	beam problem using technique such as Euler's method, Taylor's series,	
	runge-kutta and gaussian quadrature method.	
CO3	Solve nonlinear first order equation. About the most widely used (newton-	C3
	ripsaw method) to find the roots also the simplest method (bisectional	
	method) for the solution of nonlinear equation.	
CO4	Students will understand about the application of finite difference	C4
	techniques to solve for soles & deflections for beams with different	
	boundary conditions.	
CO5	Application off fdt's for column buckling, torsion and membrane	C4
	Problems.	

- I) Two questions are to be set from each module.
- Ii) Total five questions are to be answered by selecting minimum one question from Each module

Text book:

- 1. Grewal. B.S. and Grewal. J.S., "Numerical methods in Engineering and Science", Khanna Publishers, 9th Edition, New Delhi
- 2. Gerald. C. F., and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6th Edition, New Delhi.

Reference books:

- 1. Chapra. S.C. and Canale. R. P., "Numerical Methods for Engineers, Tata McGraw Hill, New Delhi.
- 2. Brian Bradie. "A friendly introduction to Numerical analysis", Pearson Education, Asia, New Delhi.
- 3. Sankara Rao. K., "Numerical methods for Scientists and Engineers", Prentice Hall of India Private, New

Delhi

Nptel Link: https://youtu.be/qqhsmdkqgjq

<u>APTITUDE-I</u>			
Course Code	18HU02	CIE: 50	
Number of Lecture Hours/Week	1Hrs (Theory)	SEE: 50	
Total Number of Lecture Hours	28 Hour	SEE 03: Hours	

Prerequisite:

Course objectives:

TOPICS	TAKE AWAY	METHODOLOGY	APPLICATION	DURATION (HOURS)
Quantitative aptitude				
Simple equations and ages LCM and HCF Ratio, Proportions and Variations Divisibility rules and Unit digit Remainder theorem	Focus on the concepts of-Simple equation, ages median and mode	Problem Solving Blended Learning	Understanding the concepts and short cuts related to the topics	11
<u>Verbal</u>				
Reading comprehension Synonyms and antonyms Subject verb agreement Verbal analogies Verbal sequence	Focus on the mentioned topics and application of the concepts related to the same	Blended Learning and NLP	Understanding the application of the verbal topics through examples	08
Communication Skills				
Presentation skill Preparing presentation Organizing the materials Maintaining and preparing sequence of visual aids Dealing with the questions'	Understanding the basics of presentation skill, ways to present effectively Do's and Don'ts of presentation skill	NLP, Blended Learning, Presentation	What is presentation Skills? Ways of effective presentation managing visual aids during presentation	07

CareerMarketing				
Interview skills Introduction to interview Skills	Introduction to interview	Brainstorming	What is an interview?	01
Resume Skills Introduction to resume writing skill	Introduction to resume	Brainstorming	What is a resume?	01
			Total	28

CONCRETE AND HIGHWAY MATERIAL TESTING LAB		
Subject code	18CVL68	Credit: 01
Hours/week	2 hours Practical	See: 50 marks
Total hours: 28	CIE: 50 Marks	SEE: 3 hours

Prerequisite:

Course objectives:

To learn the principles and procedures of testing of highway materials

List of Exercises:	Teaching Hours
Normal Consistency,	2 Hours
Setting time	
Soundness by autoclave method,	
Compression strength test and	2 Hours
Air permeability test for fitness,	
Specific gravity of cement	2 Hours
Fresh Concrete Workability:	
Slump	2 Hours
Compression factor	2 Hours
Vee Bee Tests	
Hardened Concrete:	
Compression Strength	2 Hours
Split tensile tests	2 Hours
Test on flexural strength of RCC beams,	2 Hours
Permeability of concrete	2 Hours
Aggregate Crushing:	2 Hours
Abrasion impact	2.11
Shape Tests (Flaky, Elongation, Angularity Number)	2 Hours
Specific Gravity Water Absorption	2 Haurs
Water Absorption Pituminous Mix and Mixes Specific Gravity Panetration	2 Hours
Bituminous Mix and Mixes Specific Gravity Penetration, Ductility	2 Hours
Softening point	Z Hours
Flash and fire point viscosity,	2 Hours
Marshall Stability tests	2 1100118

Course Outcomes: On completion of this course, students are able to:

CO		BL
CO1:	Demonstrate the concepts of Concrete and Highway Engg theory course	C2
	through series of experiments.	
CO2:	Share the responsibilities in small teams of 4-5members for	C3

	Conducting the experiments.	
CO3:	Perform the experiments and determination Normal Consistency,	C4
	Setting time . Soundness by autoclave method, Compression strength	
	test and Air permeability test for fitness,	
	Specific gravity of cement of strength of aggregates, Bitumen and Tar	
	Properties like Softening point, ductility, and Flash and fire	
CO4	Analyze the data and interpret the results.	C3
CO5	Prepare a well-organized laboratory report.	C3

- i) Two questions are to be set from each module.
- ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

Reference books:

- 1. M. L. Gambir, "Concrete Manual", Danpat Rai and sons, New Delhi
- 2. Shetty M.S, "Concrete Technology", S. Chand &Co. Ltd, New Delhi.
- 3. Mehta P.K, "Properties of Concrete", Tata McGraw Hill Publications, New Delhi.
- 4. Neville AM, "Properties of Concrete", ELBS Publications, London.
- 5. Relevant BIS codes.
- 6. S K Khanna, C E G Justo and A Veeraragavan, "Highway Materials Testing Laboratory Manual", Nem Chand Bros, Roorkee.
- 7. L R Kadiyali, "Highway Engineering", Khanna Publishers, New Delhi.

Nptel Link: https://youtu.be/3oNa9Z94Hiw

SOFTWARE BASED LAB		
Subject code	18CVL69	Credit: 01
Hours/week	1 hours. (Theory) + 2 practical	See: 50 marks
Total hours:	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Basic Knowledge of computers

Course objectives:

This course will enable students to

- 1.Use industry standard software in a professional set up.
- 2.Understand the elements of finite element modeling, specification of loads and boundary condition, performing analysis and interpretation of results for final design.

3. Develop customized excel spread sheets.

Modules		Teaching
		Hours
	Module I	
Use of civil e	ngineering software for:	
1. Analy	sis and design of plane trusses, continuous beams.	14 hours
2. 3D an	alysis of multistoried frame structures(G+2).	
	Module-II	
Use of EXCI	EL spread sheets:	8 hours
Design of sin	gly reinforced and doubly reinforced rectangular beams, design of one way	
and two-way	slabs and Axially loaded Column.	
	Module-III	
GIS applications using open-source software:		6 hours
1.To create shape files for point, line and polygon features with a map as reference.		
2. To create decision maps for specific purpose.		
Course Outcomes: On completion of this course, students are able to:		
CO		BL
CO1:	Analyze and Design beams and trusses using software	C2
CO2:	3DanalysisofmultistoriedframestructuresusingSoftware.	C3
CO3:	ApplyGISsoftwaretocreateshapefileswithamapasreferenceandtocreate	C4
	Decision maps for specific purpose	
CO4	Design beams and slabs using excel spread sheets	C5
CO5	Design Columns using excel spread sheets	C5
Ouestion paper pattern:		

Question paper pattern:

Reference books:

Training manual sand User manual sand Relevant course reference books **E-Books:** www.civilenggebooks.com

EXTENSIVE SURVEY PROJECT *(MINI PROJECT)		
Subject code	18CV67	Credit: 02
Hours/week	1 hours. (Theory)+ 2 hours Practical	See: 50 marks
Total hours:	CIE: 50 Marks	SEE: 3 hours

Prerequisite:

Course objectives:

To be conducted between 5th& 6th Semester for a period of 2 weeks, Viva voce conducted along with 6th semester exams)

An extensive survey training involving investigation and design of the following projects is to be conducted for 2 weeks (14 days). The student shall submit a project report consisting of designs and drawings. Preferably the Total Station must be used for the survey work of the projects

Modules	Teaching
	Hours

General instructions, Reconnaissance of the sites and fly levelling to establish bench marks.

1.new tank projects: The work shall consist of

Alignment of center line of the proposed bund, Longitudinal and cross sections of the center line. Capacity surveys.

- 2. Details at Waste weir and sluice points. Canal alignment:
- **3. Restoration of an existing tank:** The work shall consist of : Alignment of center line of the existing bund, Longitudinal and cross- sections. along the center line. Capacity surveys, details at sluice and waste weir.

4. Water supply and sanitary project:

Examination of sources of water supply, Calculation of quantity required based on existing and projected population. Preparation of village map by any suitable method of surveying (like plane tabling), location of sites for ground level and overhead tanks, underground drainage system surveys for laying the sewers

5. Highway project: Preliminary and detailed investigations to align a new road between two terminal stations. The investigations shall consist of topographic surveying of strip of land for considering alternate routes and for final alignment. Report should justify the selected alignment with details of all geometric designs for traffic and design speed assumed. Drawing shall include key plan initial alignment, final alignment, longitudinal section along final alignment, typical cross sections of road

Course Outcomes: On completion of this course, students are able to:

CO	BL

CO1:	Demonstrate the concepts of survey, water resource engineering, environmental engineering and transportation engineering theory course through series of experiments	C2	
CO2:	Share the responsibilities in small teams of 4-5 members for conducting the experiments.	C2	
CO3:	Perform the experiments and determination of General instructions, Reconnaissance new tank projects Alignment of center line of the proposed bund, Longitudinal and cross sections of the center line. restoration of an existing tank, water supply and sanitary project, Examination of sources of water supply, highway project Preliminary and detailed investigations to align a new road between two terminal stations.	C4	
CO4	Analyze the data and design the projects such highway, water supply and sanitation, overhead tank and restoration of existing tank project	C3	
CO5	Prepare a well-organized drawings and report containing detail design.	C3	
Questi	on paper pattern:		
Refere	Reference books:		
Training manuals and User manuals			
Releva	Relevant course reference books		
Nptel I	Nptel Link: https://youtu.be/HgKYf6TVrNE		
E-Bool	E-Books: www.civilenggebooks.com		

INTERNSHIP		
Subject code	Credit:	
Hours/Week		SEE: 50 Marks
Total hours:	CIE: 50 Marks	SEE: 3 Hours

Prerequisite:

Course objectives:

This course will enable students to get the field exposure and experience

Note: Internship /Professional Practice:

- 1. This shall be carried out by students in industry set-up related to the construction/ materials testing laboratories/research organizations/project management consulting firms/QS and QA organizations/ planning and design offices/Professional organizations like ACCE/ICI/INSTRUCT/RMCMA/QCI, PMI, CIDC etc. and other avenues related to the civil engineering domain in consultation and approval of internship guide/HOD /internship committees of the institutions.
- 2. The professional certification programs like ACCE(I)- SMP, ICI-BMTPC certifications, NSTRUCT certifications, CIDC certifications, RMC-QCI's RMCPCS Certification Programs, RMCMA-NRMCA'S Concrete Technologist India (CTI) programs and such similar programs by professional bodies with adequate industry exposures at sites/RMC plants can be considered as Internship /Professional Practice with due approvals from the guide/HOD /internship committees of the institutions
- 3. The industry/organization should issue certificates of internship offer and its completion. The offer letter should clearly have the nature of work to be done by the student and the supervisor's name and duration of internship.
- 4. The Duration of Internship shall be 8 Weeks. Student shall make a midterm and final presentation of the activities undertaken during the first 4 weeks (In last week of VII sem or at the beginning of VIII sem) and at the end of 8th week of internship (preferably latest by last week of VIII sem) respectively, to a panel comprising internship guide, a senior faculty from the department and head of the department. Each student should submit the internship report at the end of semester with internship certificate.
- 5. Viva-Voce examination shall be conducted by a panel of examiners consisting of internship supervisor from industry or industry professional approved by Institute or in the case of non-availability of industry person a internal expert and internship guide from the institute.
- 6. The College shall facilitate and monitor the student internship program.
- 7. The internship should be completed during vacation after VI and VII and (If not completed during the vacation of VI and VII semesters, it shall be carried out during the vacation of VII and VIII semesters.

Hyderabad Karnataka Education Society's

Poojya Doddappa Appa College of Engineering

(An Autonomous Institution & Affiliated to

Visvesvaraya Technological University, Belagavi)

Aiwan E-Shahi Area KALABURAGI 585 102 Karnataka India

SCHEME AND SYLLABUS

FOR B.E. VII SEMESTER AND VIII SEMESTER

FOR THE ACADEMIC YEAR 2021-22

DEPARTMENT OF CIVIL ENGINEERING

About College:

Poojya Doddappa Appa College of Engineering (PDACE) is the first institution of Hyderabad Karnataka Education (HKE) Society, Kalaburagi, which was established in the year 1958. The foundation stone of this college was laid by the then Vice President of India Dr. Sarvapalli Radhakrishnan in 1958.

At present, PDA College of Engineering is offering 11 UG programs, 10 PG Programs and 12 Research centers, spreading and imparting technical education in North Karnataka Region. The college has state of the art laboratories, digitalized smart class rooms having highly qualified and experienced faculty with highest no. of Ph.D. and M. Tech degrees.

PDACE is the only Autonomous Institution in the region, which was sponsored under TEQIP I, TEQIP-II and TEQIP-III from World Bank and received grants of Rs.10.43 crores, Rs. 17.5 crores and 7 crores respectively. This is one among 12 institutions having TEQIP-I and TEQIP-II sponsorship. At present, college is selected in TEQIP-III as Mentor Institution for Bundelkhand Institute of Engineering & Technology, Jhansi.

The Vision and Mission of PDA College of Engineering are as mentioned below.

VISION

• To be an institute of excellence in technical education and research to serve the needs of the industry and society at local and global levels.

MISSION

- To provide a high-quality educational experience for students with values and ethics that enables them to become leaders in their chosen professions.
- To explore, create and develop innovations in engineering and science through research and development activities.
- To provide beneficial service to the national and multinational industries and communities through educational, technical and professional activities.

About Department of Civil Engineering

The Civil Engineering Department was established in the year 1958with an intake of 60 students. In 1994 the intake was increased to 90 and further increased to 180 in the year 2014. Presently the department runs both UG and PG (Environmental Engineering and Structural Engineering) programs with intake of 180 in UG program and 18 in each PG program. Department is recognized as Research Centre by Visvesvaraya Technological University Belagavi in the year 2002 and at present 35 research scholars are pursuing their Ph.D. and seven research scholars have been awarded with Ph D degree.

The Department has signed MoU with various industries like Medini, Sharan Technical consultancy, Canter Technologies Pvt. Ltd, Sharan Chandra Consultant, JGD Consultants, Jalavahini Management Services Pvt. Ltd. Dharwad, Shah Technical Consultants Pvt. Ltd., PP Raju & Co., Design Consortium, KRIDL, Bharath Dal and Oil Industries, Ultratech, ACC, Alstom, Karnataka State Pollution Control Board & HCC. These MoUs have helped the students in getting exposure to industrial environment and also for conducting Industry Institute Interaction events.

The Vision, Mission and Program educational objectives of Civil Engineering Department are as follows:

VISION

 To be the preeminent department for imparting technical knowledge and skills in the Civil Engineering field to meet the social, industrial, environmental and research needs at local and global levels.

MISSION

- To provide technical education to meet the challenges in the profession through a well-structured curriculum.
- To inculcate innovation and research ideas for sustainable development with ethical background.
- To impart entrepreneurial skills for serving the needs of the society through technical and professional activities.
- To create Civil Engineering professionals to serve the needs of the industry at local and global levels.

PROGRAMEDUCATIONALOBJECTIVES(PEO'S)

Program educational objectives are broad statements that describe the Career and Professional accomplishments that the program is preparing graduates to achieve. The program educational objectives of the B.E. in Civil Engineering Program at PDA College of Engineering, Kalaburagi are:

PEO1: To provide the knowledge of mathematics, science and engineering fundamentals for solving civil engineering problems.

PEO2:To enable the graduates to exhibit their technical knowledge and skills of recent practices to identify and solve civil engineering problems.

PEO3:To enable the graduates to conduct and interpret the results of laboratory/ field experiments in basic sciences, engineering sciences and civil engineering.

PEO4: To enable the graduate for pursuing higher education and lifelong learning.

PEO5:To enable the graduates to acquire communication, team work and entrepreneurial skills along with the values of professional ethics.

PROGRAM OUTCOMES

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

The Civil Engineering graduates are able to:

PSO1: Plan, Analyze and Design buildings, Water supply and Sewerage systems, Hydraulic structures and Transportation infrastructure using sustainable materials and conceptual knowledge of Geotechnical engineering.

PSO2: Conduct survey and Laboratory experiments/ field investigations and interpret the data for application to real life problems.

PSO3: Prepare detailed estimate of civil Engineering works and Execute the civil Engineering Projects with optimum resources using effective communication skills and Professional ethics

SEMESTER VII

Code No.	Course	Hours/Week		Maximum					
							Mark	S	
		Lecture	Tutorial	Practical	Self-	Credits	CIE	SEE	Total
					study				
			THEORY	Y					
18CV71	ESTIMATING,	3	2	0	-	4	50	50	100
	COSTING &								
	SPECIFICATIONS								
18CV72	DESIGN OF R.C.C	3	2	0	-	4	50	50	100
	STRUCTURES								
18CV73	WATER	3	2	0	-	4	50	50	100
	RESOURCES								
	ENGG.								
18CV74x	ELECTIVE – III	3		0	-	3	50	50	100
18CV75x	ELECTIVE – IV	3		0	-	3	50	50	100
18CVOE76	OPEN ELECTIVE-II	3		0	-	3	50	50	100
		P	RACTICA	AL					
18CVL77	CAD LAB	1	0	2	-	2	50	50	100
18CV78	SEMINAR/CASE	0	0	2	-	1	50		50
	STUDY/GROUP								
	WORK								
18CV79	PROJECT PHASE –	0	0	2	-	1	50	50	100
	Ι								
	INTERNSHIP	To be car	rried out d	uring the in	tervenir	ıg			
		vacations	s of VI and	VII semes	ters				
				uring the va					
		and VII semesters, it shall be carried out							
	during the vacation of VII and VIII semesters								
	Total	18	04	06	-	25	450	450	900

ELECTIVE - III	ELECTIVE - IV	OPEN ELECTIVE-II
18CV741- SOLID WASTE MANAGEMENT	18CV751-ADVANCED FOUNDATION DESIGN	18CVOE761- RURAL
MANAGEMENT	FOUNDATION DESIGN	DEVELOPMENTTECHNOLOGY
18CV742- ENGINEERING	18CV752- INDUSTRIAL	18CVOE762 – OPTIMIZATION
HYDROLOGY	WASTE WATER	AND RELIABILTIY ANALYSIS
	TREATMENT	
18CV743- DESIGN OF	18CV753- RAILWAY,	18CVOE763-FINITE ELEMENT
BRIDGES	AIRPORT & HARBOUR	METHOD
	ENGG	
18CV744 REINFORCED	18CV754- PAVEMENT	18CVOE764 -GLOBAL
EARTH	DESIGN	ENVIRONMENTAL ISSUES

SEMESTER VIII

Code No.	Course			Hours/V	Veek		N	Iaxim ı	ım
								Mark	s
		Lecture	Tutorial	Practical	Self-	Credits	CIE	SEE	Total
					Study				
			THEOR	Y					
18CV81	DESIGN OF								
	STEEL	3	2	0		4	50	50	100
	STRUCTURES								
18CV82x	ELECTIVE-V	3		0	-	3	50	50	100
18CVOE83x	OPEN ELECTIVE	3		0	-	3	50	50	100
	-III								
18CVMC84	CERTIFICATION				-	1	-		
	COURSE								
	(NPTEL/MOOCS)								
	PRACTICAL								
18CVP85	PROJECT WORK	0	0	16	-	8	50	50	100
	PHASE – II								
18CVIN86	INTERNSHIP				-	2	50	50	100
	Total	09	02	16	-	21	250	250	500

ELECTIVE -V	OPEN ELECTIVE- III
18CV821- ADVANCED RCC DESIGN	18CVOE831 ENGINEERING ECONOMICS
	AND- MANAGMENT
18CV822- DESIGN OF PRESTRESSED	18CVOE832- ENVIRONMENTAL IMPACT
CONCRETE STRUCTURES	ASSESSMENT
18CV823- DESIGN OF HYDRAULIC	18CVOE833- AIR POLLUTION AND
STRUCTURES	CONTROL
18CV824- DESIGN OF EARTHQUAKE	18CVOE834 - ENVIRONMENTAL
RESISTANT STRUCTURES	PLANNING AND MANAGEMENT
18CV825- ADVANCED STEEL	18CVOE835-DISASTER MANAGEMENT
STRUCTURE DESIGN	

VII SEMESTER

ESTIMATING, COSTING & SPECIFICATIONS					
Subject code 18CV71 Credit: 04					
Hours/Week	3 hours. (Theory)	SEE: 3 hours			
Total hours: 42	CIE Marks: 50 Marks	SEE: 50 Marks			

Prerequisite: Building material and construction, building planning and drawing

Course objectives:

To enable the students to obtain the basic knowledge about in the following topics: -

- 1.Understand the methods of taking out the quantities of each item of building components earth work, Bed concrete, Size stone masonry, Brickwork, RCC work etc. and for sanitary works, culverts, and steel truss.
- 2. Understand the method of writing the detailed specifications for all items of building of other works
- 3. Capable of calculate the rate per unit quantity of all items of building and other works.

4. Able to evaluate the value of property for different purposes.

	Modules	Teaching
		Hours
17-	Module I	
	timate: Different types of estimates, Study of various drawings, important	
	ms, units of measurements, abstracts, approximate methods of estimating	
	Estimation: Methods of taking out quantities & their cost – center line method, long wall & short wall method. Preparation of detailed abstract & estimates for the following civil engineering works – Buildings- masonry structures & framed structures with flat & sloped R.C.C roof. Building components such as beams, columns, footings & roof slab with T beams. Excel spread sheet for estimation of small buildings.	10 Hours
2.	2. Estimates: Steel trusses – fink & Howe trusses, R.C.C. slab culverts, manholes	
	& septic tank with soak pits. Excel spread sheet for estimation of slab culvert	06 Hours
	bridges.	
	Module-II	
1.	Specifications: Definition, objectives & essentials of specifications. General & detailed specifications for items of works in buildings, specifications of aluminum & wood partitions, false ceiling, aluminum & fiber doors & windows, various types of claddings.	03 Hours
2.	Contracts: Types of contracts – essentials of contract agreement – legal aspects, penal provisions on breach of contract. Definition of the terms – tender, earnest money deposits, security deposit, tender forms, documents & types. Comparative statements, acceptance of contract documents & issue of work order. Duties & liabilities, termination of contract, completion certificate, quality control, right of contractor, refund of deposit. Administrative approval,	03 Hours

technical sanction, nominal muster roll, measurement books, procedure for			
rea	ding & checking measurements – preparation of bills.		
	Module-III		
Rate A	Analysis: Definitions & purpose, working of quantities of and rates for the	07 Hours	
followi	ng standard items of works - earth work, cement concrete, brick work,		
stone n	nasonry, flooring, plastering, R.C.C. works, centering & form work for		
differen	nt R.C.C. items, wood & steel works for doors, windows & ventilators.		
	Module -IV		
Measu	rement of earthwork for roads: methods for computation of earthwork by	07 Hours	
differen	nt methods.		
	Module-V		
Valuat	Valuation: Definition of terms used, different methods of valuation for different		
purpos	es with numerical examples.		
Course Outcomes: On completion of this course, students are able to:			
CO1:	Prepare the estimate for building items such as foundation, wall, column,	BL C2	
CO1.	beam, roofs lab steel roof trusses and Sanitary works.		
004	•	~	
CO2:	Prepare the tender document and tender notice with detailed specifications	C2	
	including the legal aspects of contract of civil engineering projects		
CO3:	Determine the rates of different items of civil engineering works such as	C3	
	Earth work excavation, stone and brick masonry, woodwork, concrete and		
	Reinforced concrete works.		
CO4	Determine the quantity of earthwork by different methods for railways and	C3	
	highway		
CO5	Determine the fair price of the property by different methods of valuation	C3	
	for different		
/D: 4.1	1	·	

- 1. Datta B.N., "Estimating and costing", UBSPD Publishing House, New Delhi.
- 2. B.S. Patil, "Civil Engineering Contracts and Estimates", Universities Press.
- 3. M. Chakraborthi; "Estimation, Costing and Specifications", Laxmi Publications.
- 4. MORTH Specification for Roads and Bridge Works IRC New Delhi.

Reference books:

- 1. Kohli D. D and Kohli R.C, "Estimating and Costing", 12 th Edition, S.Chand Publishers, 2014.
- 2. Vazirani V.N and Chandola S.P, "Estimating and costing", Khanna Publishers, 2015.
- 3. Rangwala, C. "Estimating, Costing and Valuation", Charotar Publishing House Pvt. Ltd., 2015
- 4. Duncan Cartlidge, "Quantity Surveyor's Pocket Book", Routledge Publishers, 2012.
- 5. Martin Brook, "Estimating and Tendering for Construction Work", A Butterworth-Heinemann publishers, 2008.
- 6. Robert L Peurifoy, Garold D. Oberlender, "Estimating Construction Costs" 5ed, Tata McGraw-Hill, New Delhi.

Nptel Link: https://youtu.be/ofkpm4lhJcg

DESIGN OF R.C.C STRUCTURES					
Subject code	18CV72	Credit: 04			
Hours/Week	3 hours. (Theory)	SEE: 50 Marks			
Total hours: 42	CIE: 50 Marks	SEE: 3 hours			

Prerequisite:

Course objectives:

To enable the students to acquire the knowledge in the following topics:

- 1.Basic concepts of RCC, Working Stress method, Limit state method.
- 2.Design of beams, slabs, staircases, columns and isolated column footing using LSM
- 3. Service ability requirements.

Modules Modules	Toochina
iviodules	Teaching Hours
Module I	110015
Introduction: Basic concepts of reinforced concrete, Design philosophies in	
structural design, Load and Load combinations, Stress- Strain behavior of concrete	9 Hours
and steel, Working stress method (Elastic theory): Assumptions, concept of	9 110u18
Transformed Area concept, Philosophy of limit state design, Characteristic loads	
and design loads, Characteristic. Strength and design strength, Limit State of	
Collapse- Flexure, Ultimate flexural strength of rectangular sections and flanged	
sections, Numerical examples for analysis of rectangular, flanged section in	
Flexure.	
Module-II	
Limit State of Collapse-Shear: Ultimate Shear strength of R.C. Sections, Limit	
State of Collapse - Torsion, Concepts of development length and anchorage in	8 Hours
R.C. Sections, Numerical examples. Limit state of serviceability for deflection,	0 110 010
Computation of short term and long-term deflection for Singly Reinforced	
Rectangular section as per IS 456-2000. Limit state of serviceability for cracking,	
Control of cracking and computation of crack width as per IS 456-2000 for Singly	
Reinforced sections. Numerical examples on computation of deflection and crak	
width.	
Module-III	
Design of beams: Codal requirements in the design of beams, cover to	
reinforcement, spacing of Reinforcement, curtailment and splicing of	
reinforcement, Design of reinforced rectangular beams (singly & doubly) with	8 Hours
detailing. (Cantilever & simply supported). Design of flanged beams with	
detailing.	
Module -IV	
Design of slabs: Introduction, General aspects in the design of slabs, Design &	
detailing of rectangular slabs spanning in one direction (Simply supported and	8 Hours
Continuous) as per IS: 456-2000, Design & detailing of rectangular slabs spanning	
in two directions (Simply supported and Continuous) as per IS: 456-2000, Design	
& detailing of Cantilever slabs.	
Design of staircase: Introduction, Structural behavior of staircases, Loads and	

distribution of load on staircases as per IS: 456-2000, Design & detailing of	
staircases (Dog legged, Open well type), Design concepts of Free-Standing Stair	
cases.	
Module-V	
Design of columns: Introduction, Limit state of compression, Minimum	
eccentricity, slenderness limits, Codal provisions for reinforcement & detailing,	
Design & detailing of short axially loaded columns (Square &. Rectangular and	9 Hours
circular), Design & detailing of short columns under axial load with uniaxial	
bending and axial load with biaxial bending using SP-16 (Square & Rectangular	
sections).	
Design of footing : Introduction, types of footing, Structural behavior of footing,	
selection of types of footing, footing shapes & size, Reinforcement requirement as	
per IS: 456: 2000, Design & detailing of Isolated footing of uniform depth &	

Course Outcomes: On completion of this course, students are able to:

CO		BL
CO1:	Analyze rectangular and flanged beams using working stress method	C3
CO2:	Analyze the beams using limit state approach for flexure, shear, torsion and also analyze the flexural members for limit state of serviceability	C3
CO3:	Design rectangular and flanged beams by limit state approach	C4
CO4	Design one way and two-way slabs and stair case using limit state approach	C4
CO5	Design columns and isolated column footing using limit state approach	C4

Question paper pattern:

i) Two questions are to be set from each module.

variable depth (Square & Rectangular footing).

ii) Total five questions are to be answered by selecting minimum one question from each module

Text book:

- 1. Unnikrishnan Pillai and Devdas Menon, "Reinforced Concrete Design", McGraw Hill, New Delhi
- 2. Subramanian, "Design of Concrete Structures", Oxford university Press
- 3. H J Shah, "Reinforced Concrete Vol. 1 (Elementary Reinforced Concrete)", Charotar Publishing House Pvt. Ltd.

Reference books:

- 1. P C Varghese, "Limit State design of reinforced concrete", PHI, New Delhi.
- **2.** W H Mosley, R Husle, J H Bungey, "Reinforced Concrete Design", MacMillan Education, Palgrave publishers.
- 3. Kong and Evans, "Reinforced and Pre-Stressed Concrete", Springer Publications.
- 4. A W Beeby and Narayan R S, "Introduction to Design for Civil Engineers", CRC Press.
- 5. Robert Park and Thomas Paulay, "Reinforced Concrete Structures", John Wiley & Sons, Inc.

Nptel Link:https://youtu.be/pldaC_I6H_M

WATER RESOURSE ENGG				
Subject code	18CV73	Credit: 04		
Hours/Week	3 hours. (Theory)	SEE: 50 Marks		
Total hours: 42	CIE: 50 Marks	SEE: 3 hours		

Prerequisite:

Course objectives:

to enable the student to acquire the knowledge in the following topics
1. Introduce importance of water resource engineering
2. Making students to understand basics of hydrology

- 3. Introduce problems involved in canal irrigation system.4. Design of earthen Demand spillway

Modules	Teaching	
	Hours	
Module I		
Introduction: water resources engineering disciplines, water management sectors		
Water wealth of India. Hydrological cycle, water shed hydrology, measurement of		
precipitation by rain gauges Computation of precipitation, missing rainfall data,		
rainfall density, rainfall mass curve & hyetograph Problems on above.		
Module-II		
Runoff: Runoff cycle, factors affecting runoff, computation of average annual		
runoffmaximum runoff & problems.	8 Hours	
Reservoirs: Types, site selection, Investigation for reservoirs. Determination of		
storage capacity of reservoirs using mass curve, analytical method, storage zones		
of reservoir, economical height of dam.		
Module-III		
Canal irrigation: Types of canals, alignment of canals, definition of gross		
command area, culturable command area, intensity of irrigation, time factor,	10 Hours	
capacity factor, kharif season, rabi season, types of crops & their duty, delta, base		
periods determination of canal capacity frequency of irrigation, field capacity.		
Crop factor. Consumptive use of waterborne criddle equation problems irrigation		
efficiency, L-section of canal, balancing depth of canal		
Module -IV		
Types of Dams & Spillways: Rigid dans& non rigid dams Gravity dams, Forces		
acting ongravity dams Types of Spillways, Necessity location, ogee spillway.	8 Hours	
Design of ogee spillway, Energy dissipation below spillway. Use of hydraulic		
jump &design of stilling basin, Design of gravity dams		
Module-V		
Earthen dams: Types, Necessity, mode of failures of earth dams, Preliminary		
section, design sf earth dam, determination of Phreatic line in earth dams, seepage	8 Hours	
discharge, problems Control of seepage in earth dams & beat sketches. Design		
criteria of earth dans, stability of slopes, Fellenious method of locating critical slip		
circle, swedesh Alip circle method Hours		
Course Outcomes: On completion of this course, students are able to:		

CO		Blooms
		Level
CO1:	Explain water management sectors and importance of water resource	C2
	projects	
CO2:	Describe hydrological cycles and various components	C2
CO3:	Assess requirements of canal irrigation and gain knowledge about	C2
	spillways and energy dissipating systems	
CO4	Design od Spillways and Dams	C5
CO5	Design earthen dam	C5

Question paper pattern:

Scheme of SEE: i) Two questions are to be set from each module. i) Total five questions are to be answered by selecting minimum one question from each module.

Text book:

- 1. S. K. Garg, "Irrigation Engineering and Hydraulic Structures", Khanna Publishers, New Delhi.
- 2. Punmia and Pandey Lal, "Irrigation and Water Power Engineering" Lakshmi Publications, New Delhi.
- 3. K. R. Arora. "Irrigation, Water Power and Water Resources Engineering" Standard Publications, New Delhi.

Reference books: .

- 1. Garg, S.K. "Hydrology & Water Resource Engineering" khanma publications
- 2. Modi, P.N. "Imgation, Water Resources and Water Power Engineering Standard Book
- 3. R.K. Sharma, "Hydrology & Water resources Engineering House, New Delhi.
- 4. Punmia and Pandey Lal, Irrigation and Water Power Engineering Lakshmi Publications, New Delhi.

Nptel Link: https://youtu.be/fx1uUek3lqg

SOLID WASTE MANAGEMENT				
Subject code 18CV741 Credit: 03				
Hours/Week	3 hours. (Theory)	SEE: 50 Marks		
Total hours: 42	CIE: 50 Marks	SEE: 3 hours		

Prerequisite: Environmental studies, Environmental engg- II

Course objectives:

To enable the students to acquire the knowledge in the following topics:

- 1. Need for solid waste management studies scope and importance of solid waste management.
- 2. To identify the sources of wastes collection and transportation of wastes.
- 3. Waste disposal methods
- 4. Knowledge of the hazardous solid waste and impacts on environment.
- 5. Concept of reduce recycle and reuse of wastes.

Modules	Teaching Hours
Module I	Hours
	6 hours
Introduction: Solid waste – Definition, Land pollution – scope and importance of	o nours
solid waste management, functional elements of solid waste management.	
Sources: Classification and characteristics – municipal, hospital / biomedical	
waste, Quality – generation rate, methods.	
Module-II	
Collection and transportation: Systems of collection, collection equipment,	5 hours
garbage, chutes, transfer stations – bailing and compacting, route optimization.	
Treatment / processing techniques: Component's separation, volume reduction,	
size reduction, chemical reduction and biological processing.	5 hours
Module-III	
Incineration: Processes -3 T's, factors affecting incineration process, incinerators	5 hours
– types, prevention of air pollution, pyrolysis.	
Composting: Aerobic and anaerobic composting, factors affecting composting,	4 hours
Indore and Bangalore processes, mechanical and semi mechanical composting	
processes, Vermicomposting	
Module -IV	
Sanitary land filling: Definition, methods, trench area, ramp and pit method, site	9 hours
selection, basic steps involved, cell design, prevention of site pollution, leachate	
collection and control methods, gas collection systems.	
Open dumping – selection of site, ocean disposal, feeding to hogs	
Module-V	
Disposal method : Incineration, pyrolysis, composting, sanitary landfilling, merits	
and demerits.	
Recycle and reuse: Material and energy recovery operations, reuse in other	5 hours
industries, plastic wastes, environmental significance and reuse.	
Course Outcomes: On completion of this course, students are able to:	

CO		BL
CO1:	Identify the sources, types, composition and characteristics of solid wastes.	C1
CO2:	Identify the systems of collection, equipment's used for the collection of solid waste.	C3
CO3:	knowledge of the hazardous of solid waste and the necessity to treat solid waste.	C2
CO4	Identify the methods of disposal for different solid waste.	C1
CO5	know the importance of reduce, recycle and reuse of solid wastes.	C1

- 1. George Tchobanoglous, Hilary Theisen, Samuel A Vigil, "Integrated Solid Waste Management Engineering principles and management issues", M/c Graw hill Education. Indian edition
- 2. Howard S Peavy, Donald R Rowe and George Tchobanoglous, "Environmental Engineering", Tata Mcgraw Hill Publishing Co ltd.,

Reference books:

- 1. Municipal Solid Wastes (Management and Handling) Rules, 2000.Ministry of Environment and Forests
- 2. Notification, New Delhi, the 25th September, 2000. Amendment -1357(E) 08-04-2016
- 3. Municipal Solid waste management manual, Part II published under Swachh Bharat Mission, Central
- 4. Public Health and Environmental Engineering Organization (CPHEEO), 2016, Ministry of Urban Development, Government of India.
- 5. Handbook of Solid waste management, second edition, George Tchobanoglous, Frank Kreith, published by M/c Graw hill Education, 2002, ISBN-13 978-0071356237 ISBN -10 0071356231

Nptel Link:

https://youtu.be/cjIacnNRLHE

ENGINEERING HYDROLOGY					
Subject code 18CV742 Credit: 03					
Hours/Week	3 hours. (Theory)	SEE: 50 Marks			
Total hours: 42	CIE: 50 Marks	SEE: 3 hours			

Prerequisite: The students should have knowledge of Engg. Mechanics & water resources engineering

Course objectives:

The students will be able to acquire knowledge in the following topics

- 1. Hydrological cycle & Measurement rainfall over a catchment.
- 2. Engineering Analysis of Rainfall data.
- 3. Rainfall-Runoff relationship & Analysis of stream flow data.
- 4. Hydrograph theory & Application to predict floods.

Ground water hydrology & Estimation of yield of well.

Modules	Teaching Hours
Module I	
INTRODUCTION: Introduction and practical application of Hydrology and water Resources. Hydrologic cycle (Horton's Qualitative Representation), Concept of Catchment and Its Characteristics and Water budget equation.	4 hours
PRECIPITATION: Definition and forms &Types of precipitation – Climate & Weather seasons in India Measurement of precipitation – Non recording and recording type rain gauges. Computation of average depth of precipitation over an area. Statistical methods. Estimation of missing precipitation data	4 hours
Module-II	
ANALYSIS OF RAINFALL DATA: Mass curve and consistency of rainfall data Rain gauge networks – optimum number of rain gauges, Hyetograph, Infiltration and Infiltration Indices. Average & Maximum intensity curves, Depth area duration curves. Problems on dependable rain, frequency analysis.	8 hours
Module-III	
RUNOFF & STREAM FLOW MEASUREMENT: Components. Factors affecting runoff. Basin yield. Rainfall – Runoff relationship using simple regression analysis. Computation of maximum flood discharge by rational formula, Empirical equations, frequency analysis. Stream flow measurement, Stage – Discharge Curve, area-velocity method. Slope area method, Dilution method, Units of stream flow, flow duration curve, flow mass curve.	9 hours
Module -IV	
HYDROGRAPH THEORY: Components of hydrograph. Separation of base flow. Unit hydrograph theory. Derivation and application of unit hydrograph. Computation of unit hydrographs ordinates of different durations. S-Curve and its use. Computation of Run off Hydrograph using unit hydrograph. Unit hydrograph for complex storms.	9 hours

Module-V				
GROUND WATER HYDROLOGY AND WELL HYDRAULICS: Scope and				
importan	ce of ground water hydrology. Occurrence of ground water. Definitions:			
Aquifers,	, aquitard, aquifuge, aquiclude, perched aquifer. Aquifer parameters. Darcy's			
law and i	its validity. Steady radial flow into a well in confined and unconfined aquifers.			
Safe yield	d, yield of an open well Pumping test and recuperation test. problems			
Course	Outcomes: On completion of this course, students are able to:			
CO	BL			
CO1:	Students will be in a position to analyze the rainfall data and apply the			
	principles to the real problems.			
CO2:				
	principles.			
CO3:	Students acquire the knowledge of hydrographs and its components also			
	students can apply the principles of various hydrographs to solve field C3			
	problems.			
CO4	Students gain knowledge in ground water source and apply the principles C			
	to different problems.			
CO5	Students will acquire the skills to interpret the hydrological data	C3		
	pertaining to surface and ground water.	C4		

- 1. K. Subramanya, "Engineering Hydrology", Tata McGraw Hill Publishers, New Delhi.
- 2. Jayarami Reddy, "A Text Book of Hydrology", Lakshmi Publications, New Delhi.
- 3. Punmia and Lal Pandey, "Irrigation and Water Power Engineering" Lakshmi Publications, New Delhi.

Reference books:

- 1. H.M. Raghunath, "Hydrology", Wiley Eastern Publication, New Delhi.
- 2. Sharma R.K., "Irrigation Engineering and Hydraulics", Oxford & IBH Publishing Co., New Delhi.
- 3. Ven Te Chow, "Applied Hydrology", Tata McGraw Hill Publishers, New Delhi.
- 4. Modi P.N "Water Resources and Water Power Engineering"-. Standard book house, Delhi.
- 5. Garg S.K, "Irrigation Engineering and Hydraulic Structures" Khanna publications, New Delhi.

Nptel Link: https://youtu.be/XTDkU7kPfUQ

DESIGN OF BRIDGES		
Subject code	18CV743	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Elements of engg and engg mechanics, Strength of material, Structural analysis- I, Structural analysis- II

Course objectives:

- 1. Types and importance of bridges and basic investigations for proposing bridge at a site.
- 2. Details of different types of foundations for a proposed bridge its stability analysis for different components of substructures.
- 3. Loads as per IRC and stresses on different components of bridge and design of RCC slab culvert.
- 4. Design of pipe culvert and box culvert for a proposed highway road.
- 5. Design of RCC T-beam girder bridge by different methods and detailing.

Modules	
Module I	Hours
Introduction: Definition, components of bridges, Classification, types of bridges, importance of bridges.	2 hours
Bridge Site Investigation and Hydraulic Design: Selection of bridge site,	6 hours
determination of design discharge, natural, artificial and linear waterways, afflux,	Officurs
economical span, scour depth for alluvial and quasi alluvial waterways. Numerical	
problems on above.	
Module-II	
Substructure and Foundations: Types of abutments, piers, wing walls, forces to be considered for the design, Principles of stability analysis of abutment and pier &	4 hours
wing walls. Codal provisions for fixing of tentative sections of abutment, pier, wing walls. problems on stability analysis of abutments	
Foundation: Types of foundations. Shallow and deep foundations, spread and raft type foundation. Pile foundation: bearing, friction and combined bearing and friction piles. Caisson foundations and open and pneumatic caissons.	4 hours
Module-III	
Loads and stresses: various loads to be considered while designing bridges. IRC	2 hours
Loading standards. Design	
of RC slab culvert for IRC class AA tracked and class A two lane loading using	6 hours
effective width method. Neat dimensioned sketches of slab culvert showing half	
section plan at foundation, half front elevation, half plan at foundation level and	
half top view.	
Module -IV	
Design of pipe culvert: Hydraulic and structural design. pipe culvert for shallow	5 hours

and high embankments. Design of pipe culvert for high embankments. given site particulars. Neat dimensioned sketches of pipe culvert for given site particulars.		
Design of Box Culvert: Design of single box culvert by actual analysis using		
momem	t distribution method for different combinations of loads such as dead load,	
live load	, earth pressure from outside and water pressure from inside	
	Module-V	
Design	of T-Beam Bridge: Design of all the components of T-Beam bridge for	8 hours
class A	A tracked vehicle only. Design of interior deck slab panel by Pigeaud's	
theory.	Design of interior longitudinal girder by Courbon's load distribution	
method.	Approximate method of design of interior cross girder. Neat sketches	
showing	reinforcement details in slab and beams.	
CO		BL
CO1:	Explain different types of bridges and determine hydraulic inputs	
	required for design of bridges	C2
CO2:	Explain different types of foundation, principles of stability analysis of	
	abutment, pier and wing walls and analyse abutment from stability	C4
	criteria	
CO3:	Explain different types of loads for design of bridges and design a RCC	
	slab culvert	C5
CO4	Design a Pipe and Box culvert	C5
CO5	Design a T-Beam Bridges	C5

- 1. Johnson Victor. D, "Essentials of Bridge Engineering", Oxford Publishing Company.
- 2. N Krishna Raju, "Design of Bridges, Oxford and IBH publishing company
- 3. TR Jagadeesh and MA Jayaram, "Design of bridge structures", Prentice Hall of India

Reference books:

- 1. Jain and Jai krishna, "Plain and Reinforced Concrete", Vol.2 Nem Chand Brothers.
- 2. Standard specifications and code of practice for road bridges, IRC section I,II, III and IV. "Concrete Bridges", The Concrete Association of India

Nptel Link: https://youtu.be/5k8vdDSK6jU

REINFORCED EARTH		
Subject code	18CV744	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Geotechnical Engg-I and II

Course objectives:

- 1. identify, formulate reinforced earth techniques that are suitable for different soils and in different structures;
- 2. understand the laboratory testing concepts of Geosynthetics
- 3. design RE retaining structures and Soil Nailing concepts
- 4. Determine the load carrying capacity of Foundations resting on RE soil bed.
- 5. asses the use of Geosynthetics in drainage requirements and landfill designs

Modules	Teaching Hours
Module I	
Basics of Reinforced Earth Construction: Definition, Historical Background, Components, Mechanism and Concept, Advantages and Disadvantage of reinforced earth Construction, Sandwich technique for clayey soil. Geosynthetics and Their Functions: Historical developments, Recent developments, manufacturing process, Raw materials – Classification based on materials type – Metallic and Non-metallic, Natural and Man-made, Geosynthetics Properties and Tests on Materials Properties –Physical, Chemical, Mechanical, Hydraulic, Endurance and Degradation requirements, Testing & Evaluation of properties	9 Hours
Module-II	-
Design of Reinforced Earth Retaining Walls: Concept of Reinforced earth retaining wall, Internal and external stability, Selection of materials, Typical design problems Soil Nailing Techniques: Concept, Advantages & limitations of soil nailing techniques, comparison of soil nailing with reinforced soil, methods of soil nailing, Construction sequence, Components of system, Design aspects and precautions to be taken	8 Hours
Module-III	1
Design of Reinforced Earth Foundations: Modes of failure of foundation, Determination of force induced in reinforcement ties — Location of failure surface, tension failure and pull-out resistance, length of tie and its curtailment, Bearing capacity improvement in soft soils, General guidelines.	9 Hours
Module -IV	
Geosynthetics for Roads and Slopes: Roads – Applications to Temporary and Permanent roads, Role of Geosynthetic in enhancing properties of road, control of mud pumping, enhancing properties of subgrade, Design requirements Slopes – Causes for slope failure, Improvement of	8 Hours
slope stability with Geosynthetic, Drainage requirements, Construction technique. Simple Numerical Stability Checking Problems on Reinforced Slopes	

Module-V

Geosynthetics - filter, drain and landfills:

Filter & Drain – Conventional granular filter design criteria, Geosynthetic filter design requirements, Drain and filter properties, Design criteria – soil retention, Geosynthetic permeability, anticlogging, survivability and durability (No Numerical Problems) Landfills – Typical design of Landfills – Landfill liner & cover, EPA Guidelines, Barrier walls for existing landfills and abandoned dumps (No Numerical Problems)

8 Hours

Course Outcomes: On completion of this course, students are able to:

CO		Blooms Level
CO1:	Identify, formulate reinforced earth techniques that are suitable for different soils and in different structures;	C1
CO2:	Understand the laboratory testing concepts of Geosynthetics	C2
CO3:	Design RE retaining structures and Soil Nailing concepts	C2
CO4	Determine the load carrying capacity of Foundations resting on RE soil bed.	C3
CO5	Asses the use of Geosynthetics in drainage requirements and landfill designs	C3

Text book:

- 1. Koerner. R.M, "Design with Geosynthetics", Prince Hall Publications
- 2. Koerner. R.M. &Wesh J.P, "Construction and Geotechnical Engineering using synthetic fabrics", Wiley Inter Science, New York
- 3. SivakumarBabu G. L., "An introduction to Soil Reinforcement and Geosynthetics", Universities Press, Hyderabad
- 4. Swami Saran, "Reinforced Soil and its Engineering Applications", I. K. International Pvt. Ltd, New Delhi
- 5. Venkattappa Rao, G., & Suryanarayana Raju., G. V.S, "Engineering with Geosynthetics", Tata McGraw Hill publishing Company Limited., New Delhi.

Reference books:

- 1. Jones, "Earth reinforcement and Soil structure", CJEP Butterworths, London
- 2. Ingold, T.S. & Millar, K.S, "Geotextile Hand Book", Thomas, Telford, London.
- 3. Hidetoshi Octial, Shigenori Hayshi& Jen Otani, "Earth Reinforcement Practices" Vol. I, A.A. Balkema, Rotterdam
- 4. Bell F.G, "Ground Engineer's reference Book", Butterworths, London
- 5. Ingold, T.S, "Reinforced Earth", Thomas, Telford, London.
- 6. Sarsby R W- Editor, "Geosynthetics in Civil Engineering", Woodhead Publishing Ltd & CRC Press, 2007

Nptel Link: https://youtu.be/10TwMa2JiXY

ADVANCED FOUNDATION DESIGN			
Subject code	18CV751	Credit: 03	
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 hours	

Prerequisite: Geotechnical engg- I, Geotechnical engg- II

Course objectives:

To enable the students to acquire the knowledge in the following topics:

- 1. Types of shallow foundations, Bearing capacity according to BIS.
- 2. Classification of pile foundation, Group efficiency of piles.
- 3. Construction of different types of drilled piers and caissons.
- 4. Components of well foundation and forces acting on it.
- 5. Classification of expansive soils, Design of foundations in swelling soils, Drilled piers, Under reamed piles.

Under reamed piles.	
Modules	Teaching Hours
Module I Shallow foundations: Presumptive Bearing Capacity according to BIS, Factors	
affecting bearing capacity and settlement. Factors influencing selection of depth of foundation, type of shallow foundations – isolated footing. Combined footing, strap footing, Strip footing and Raft (Proportioning only)	9 hours
Module-II	
Pile foundations: Necessity, Classification, Load bearing capacity by static formula, Dynamic formula, pile load test and Penetration tests, pipe groups, group capacity of piles in sand and clay, group efficiency of piles, settlement of piles, negative skin friction, under reamed piles.	8 hours
Module III	
Drilled piers and casissons: Introduction, construction, advantages and	8 hours
disadvantages of drilled piers. Design of open, pneumatic and floating caissons.	
Advantages and disadvantages of floating caissons.	
Module -IV	
Well foundation: Different shapes and characteristics of wells. Components of	7 hours
well foundation. Terzaghi's Analysis, IRC method, Forces acting on well	
foundation. Sinking of wells. Causes and remedies of this and shifts.	
Module-V	
Foundation in expansive soils: Expansive soils, Parameters of Expansive soils,	
Classification of Expansive soils, Causes of moisture changes in soils, Effects of	10 hours
swelling on buildings, Preventive measures for expansive soils, Modification of	
expansive soils, Design of foundations in swelling soils, Drilled piers, Belled	
drilled pier, Under-reamed piles, construction of Under-reamed piles,	
Identification of collapsible soils, Design of foundation on collapsible soils not	
subjected to wetting, design of foundations subjected to wetting, Illustrative	
examples, problems.	

Course	Course Outcomes: On completion of this course, students are able to:		
CO		BL	
CO1:	Apply principles of soil design for shallow foundations.	C3	
CO2:	Design pile and pile groups with reference to dimensions.	C5	
CO3:	Explain the construction of drilled piers and principles of design for	C2	
	open, pneumatic and floating caissons.		
CO4	Explain the construction of drilled piers and principles of design for	C2	
	open, pneumatic and floating caissons.		
CO5	Determine the effects of expansive soil on foundations and apply soil	C4	
	design principle for foundation in swelling soil.		

- 1. Punmia B.C., "Soil Mechanics and Foundation Engineering, Laxmi Publications Co., India.
- 2. Donald P. Coduto, "Geotechnical Engineering Principles & Practices", Prentice-hall of India Ltd, India.
- 3. Murthy V.N.S., "Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering", CRC Press, New York.

Reference books:

- 1. Bowles J.E., "Foundation Analysis and Design", McGraw Hill Pub. Co. New York.
- 2. Swami Saran, "Analysis and Design of Substructures", Oxford & IBH Pub. Co. Pvt. Ltd., India.
- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn, "Foundation Engineering", Wiley Eastern Ltd., India.
- 4. Braja, M. Das, "Principles of Geotechnical Engineering", Cengage Learning, India.
- 5. Bureau of Indian Standards: IS-1904, IS-6403, IS-8009, IS-2950, IS-2911 and all other relevant codes.

Nptel Link: https://youtu.be/lsYFtwwlHIw

INDUSTRIAL WASTE WATER TREATMENT					
Subject code	Subject code 18CV752 Credit: 04				
Hours/Week	3 hours. (Theory)	SEE: 50 Marks			
Total hours: 42	CIE: 50 Marks	SEE: 3 hours			

Prerequisite: Engg Chemistry, Environmental engg-I, Environmental engg-II

Course objectives:

To enable the student to acquire the knowledge in the following topics

- 1. To enable the students to understand fundamentals of industrial wastewater treatment.
- 2. To make students to understand theoretical treatment of industrial wastewater in order to reduce the cost of treatment.
- 3. To make students to understand minimize the cost of treatment by joint treatment with municipal wastewater.
- 4. To enable students to understand the characterization, suitable treatment and disposal of industrial wastewater.

To enable students to understand reuse and recovery of by products from industrial wastewater.

To chaote students to understand rease and recovery of by products from industrial wastewater.			
Modules	Teaching		
	Hours		
Module I			
Introduction: Industrial wastewater, difference between Industrial and domestic	4 hours		
wastewater, effects of industrial wastewater on municipal sewage treatment systems			
and on receiving streams.			
Dissolved oxygen sag curve in streams Streeter-Phelps formulation, stream	4 hours		
sampling, effluent and stream standards.			
Module-II			
Treatment methods: Volume reduction, strength reduction, neutralization,	4 hours		
equalization, proportioning.			
Removal of suspended and dissolved solids. Treatment and disposal of sludge	3 hours		
solids.			
Module-III			
Combined treatment: Feasibility of combined treatment of industrial raw	6 hours		
wastewater with domestic wastewater. Discharge of raw, partially treated and			
completely treated industrial wastes to streams.			
Module -IV			
Treatment of industrial wastes: Processes involved, flow chart showing origin of			
wastes, their characteristics, treatment methods, disposal, reuse and recovery of bi-	11 hours		
products. Integrated cotton textile, sugar, dairy, canning, brewery, distillery and			
tanning industry.			
Module-V			
Treatment of industrial wastes: Flow chart of process involved, origin of wastes,	10 hours		
characteristics, treatment, disposal, reuse and recovery of by-products of canning,			
paper and pulp, pharmaceutical industries, metal plating and radio-active wastes.			
Course Outcomes: On completion of this course, students are able to:			

CO		BL
CO1:	Differentiate between domestic waste water and industrial waste water.	C1
CO2:	Understand the effects of industrial waste water on domestic treatment plants and on streams.	C2
CO3:	Understand the different methods of treatment of industrial wastes.	C2
CO4	The feasibility of combined treatment of industrial waste water with domestic waste water.	C3
CO5	Understand the origin of wastes in different industries, their	C2
	characteristics and treatment.	C3

- 1. Howard S. Peavy, Donald R. Rowe, George T, Environmental Engineering McGraw Hill International Edition. New York,2000
- 2. S. K. Garg, Environmental Engineering vol-I, Water supply Engineering $-\,M/s$ Khanna Publishers, New Delhi2010
- 3. B.C. Punmia and Ashok Jain, Environmental Engineering I-Water Supply Engineering, Laxmi Publications (P)Ltd., New Delhi2010.

Reference books:

- 1. CPHEEO Manual on water supply and treatment engineering, Ministry of Urban Development, Government
- of India, New Delhi.
- 2. Mark. J Hammer, Water & Waste Water Technology, John Wiley & Sons Inc., New York, 2008.
- 3. Industrial wastewater treatment Nelson Nemerow
- 4. Industrial waste treatment M N Rao and A K Dutta
- 5. Industrial waste disposal Ross R D
- 6. Pollution control in process industries Mahajan.

Nptel Link: https://youtu.be/in3GSRuooRs

RAILWAY, AIRPORT & HARBOUR ENGG			
Subject code	18CV753	Credit: 03	
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 hours	

Prerequisite: Transportation Engg-I

Course objectives:

To enable the students to acquire the knowledge in the following topics

- 1. Understand role of railway and different route selection for the construction railway track
- 2. Learn different types of structural components, engg properties of material to construct the material to calculate the material quantities required for construction
- 3. Understand the various aspects of geometric element, points and crossings, significance of maintenance of track
- 4. Design and plan Airport layout, design facilities required for runway, taxiway and impart knowledge about visual aids.
- 5. Understand different types of harbour structure, dock and necessary navigational aids: also expose them to various methods of tunneling and tunnel necessaries.

expose them to various methods of tunneling and tunnel necessaries.		
Modules	Teaching	
	Hours	
Module I		
Railways : Role of railways in transportation- selection of routes.		
Permanent way – Gauges in railways – railway track, cross-sections, coning of	8 Hours	
wheels,		
rails, rail sections, Ballast and sleepers. Rail fixtures, calculation of quantity of		
materials needed for laying of tracks. Wear on rails, rail joints, welding of rails,		
creep of rails, traction and tractive resistances, tractive power, Hauling capacity.		
Problems on above		
Module-II		
Geometric design of track - Necessity, grade, ruling gradient, pusher grade,		
minimum Gradient, grade compensation on curves. Speed of train, super elevation,		
cant- deficiency, negative cant- speed calculation based on IR Formulae for High		
speed tracks only-problems on above.		
Points and crossing: Necessity, components, turnout, design of turnout (no		
derivations, only relevant problems).		
Module-III		
Points and crossing Continued: stations and yards, Signaling and interlocking,		
track defects, track maintenance, level crossing, Indian Railway standards.	8 Hours	
Airport Planning: Layout of an airport with component parts and functions		
of each, Aircraft Characteristics – Airport Classifications, - Site selection- regional		
Planning.		
Module -IV		
Runway Design- Analysis of Wind data-determination of the best orientation of the		
runway configurations by using two types of wind rose diagrams- basic length of the		

runway –c	corrections to runway	length by ICAO and	FAA specifica	tion- runway	9 Hours
cross	Sections-	problems	on	above.	
Taxiway l	Design: Factors affecti	ng the layout of the ta	xiway-geometri	cs oftaxiway-	
design of e	exit taxiways, - ICAO S	Specifications. Problem	is on above.		
Visual Aid	ds: Airport marking – l	ightings- ILS.			
		Module-V			
Harbors:	Types, components,	typical layout, object	ts and function	ns of docks.	8 Hours
different h	arbour structures.				

Course Outcomes: On completion of this course, students are able to:

CO		BL
CO1:	Identify various components of permanent way and determine hauling capacity of railway	C3
CO2:	Determine the permanent parameters required for geometric design of track.	C4
CO3:	Explain the components of points, crossings, signaling and interlocking systems and design the turnouts.	C2
CO4	Explain the component parts and functions of an airport and design the runway length and exit taxiway.	C2
CO5	Compare different techniques of tunnelling in hard and soft rock and explain different dock and harbour structures.	C5

Text book:

- 1. Saxena Subhash C and Satyapal Arora, "A Course in Railway Engineering", Dhanpat Rai and Sons, Delhi.
- 2. Satish Chandra and Agarwal M. M, "Railway Engineering", 2nd Edition, Oxford University Press, New Delhi.
- 3. Khanna S K, Arora M G and Jain S S, "Airport Planning and Design", Nemch and and Brothers, Roorkee.
- 4.CVenkatramaiah, "Transportation Engineering", Volume II :Railways, Airports, Docks and Harbours, Bridges and Tunnels, Universities Press.
- 5. Bindra S P, "A Course in Docks and Harbour Engineering", Dhanpat Rai and Sons, New Delhi.

Reference books:

- 1. Oza.H.P.andOza.G.H., "AcourseinDocks&HarbourEngineering". Charotar Publishing Co.,
- 2. Mundrey J. S. "A course in Railway Track Engineering". Tata Mc Graw Hill.
- 3. Srinivasan R. Harbour," Dock and TunnelEngineering",26thEdition2013.

Nptel Link: https://youtu.be/37WMS483T7Y

PAVEMENT DESIGN		
Subject code	18CV754	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Transportation Engg-I and Transportation Engg-II

Course objectives:

To enable students to acquire the knowledge in the fallowing topics:

- 1. Gain knowledge about the types of pavements, factors affecting pavement design and Excel in the path of analysis of stress, strain and deflection in pavement.
- 2. Design Pavement using Burmeister Theory
- 3. Understand design concepts of flexible pavement by various methods
- 4. Determine the stresses in Rigid pavements
- 5. Design the Rigid Pavement using IRC:58 metho

Modules	Teaching Hours
Module I	110015
Introduction: Types and component parts of pavements, functions of various	4 hours
components of flexible and rigid pavements, factors affecting design and	
performance of pavements. Comparison of highway and airport pavements.	
Advantages and disadvantages of rigid or CC pavement	
Stresses and Deflections in Flexible Pavements: Stresses and deflections in	4 hours
homogenous masses using Bossiness's theory, Principle, assumptions and	
limitations. Design of flexible pavement using single layer elastic theory.	
numerical problems on above	
Module II	
Wheel load stresses various factors in traffic wheel loads, ESWL of dual and	4 hours
multiple wheel loads using equal stress and equal deflection criteria. Repeated	
loads and EWL factors using Macleod and IRC methods, numerical problems on	
above.	4.1
Burmeister two-layer theories Principle, assumptions and limitations. Vertical	4 hours
stress distribution in two-layer system. Design of pavement using vertical surface	
deflections, numerical problems on Above.	
Module-III Diagnosistan three leven theories Dringing and limitations at access	4 hours
Burmeister three-layer theories, Principle, assumptions and limitations. stresses	4 Hours
and strain using Peattie's charts and forces tables. Numerical problems on above.	
Flexible Pavement Design Methods for Highways and Airports: Empirical, semi empirical and theoretical approaches. Perpetual pavement. IRC: 37-2012 method	
of pavement design. Principles of pavement design. Design of flexible pavement	5 hours
with following two pavement compositions.	Jilouis
i] granular base and granular sub base.	
ii] cementitious base and granular sub base with rack relief layer of aggregate	
in communicus base and grandial sub-base with rack rener layer of aggregate	

above ce	ementitious base.		
Module -IV			
Stresses	Stresses in Rigid Pavements: Types of stresses and causes, factors influencing		
stresses,	general considerations in rigid pavement analysis, wheel load stresses,		
warping	stresses, frictional stresses, combined stresses. Numerical problems on		
above.	-		
Types o	f joints in cement concrete pavements and their functions, contraction,	3 hours	
warping	ad construction joints. Joint spacings and layout. numerical problems		
	Module-V		
Rigid P	avement Design: Design of plain jointed rigid pavements for highways	9 hours	
using IR	C-58:2011. Procedure for slab design. Design of, dowel bars and tie bars		
by IRC-:	58:2011. Numerical problems on above.		
Course	Outcomes: On completion of this course, students are able to:		
CO		BL	
CO1:	Explain types of pavements, factors effecting design of pavement and	C4	
	determine stresses and deflection in flexible pavement		
CO2:	Design Pavement using Burmeister Theory	C5	
CO3:	Design flexible pavement using empirical, semi-empirical, theoretical	C5	
	and IRC:37 approach		
CO4	•		
	stresses in rigid pavement		
CO5	Design a Rigid Pavement using IRC:58 method	C5	

- 1. Highway Engineering- Khanna, S.K., and Justo, C.E.G.: Nem Chand and Bros. Roorkee.
- 2. Construction Equipment and its Management- Sharma, S.C. Khanna Publishers.
- 3. Hot Mix Asphalt Materials, Mixture Design and Construction- Freddy L. Roberts, Kandhal, P.S: University of Texas Austin, Texas. NAPA Education Foundation Lanham, Maryland.

Reference books: .

Reference Books

- 1. RRL, DSIR, 'Bituminous Materials in Road Construction', HMSO Publication.
- 2. RRL, DSIR, 'Soil Mechanics for Road Engineers', HMSO Publication.
- 3. Relevant IRC codes and MoRT& H specifications

Nptel Link: https://youtu.be/uJntLOgEHD4

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/
- 4. VTU EDUSAT PROGRAMME 20

RURAL DEVELOPMENT TECHNOLOGY		
Subject code	18CV7OE761	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite:

Course objectives:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above-mentioned competency:

- 1.Undertake surveys to decide the status of socio-economic significance.
- 2. Identify the need of watershed management in rural areas.
- 3.Suggest relevant government schemes for construction of roads, housing and energy conservation.
- 4. Suggest the relevant cottage and agro based industries for the rural areas.
- 5. Select the relevant schemes of Central/State Government for the rural areas.

6. Apply the principles of rural development in rural areas.

	Modules	Teaching
		Hours
	Module I	
1.	Rural Development: Need, definition, objectives, Rural development as a	
	phenomenon, Rural development as a strategy	
2.	Significance Of Rural Development	8 Hours
	Social significance - Rural problems, social change, resource utilization,	
	infrastructure etc. Economic significance – National income, employment, food	
	and fodder, industrial development, internal trade and transport, capital	
	formation, etc.political significance- Political stability,	
3.	Rural Development Environment, Panchayat raj institution, CAP ART (Council	
	for advancement of people's action and rural technology)-Organizational set up,	
	purposes, objectives, activities.	
4.	Socio-Economic survey	
5.	Role of Civil Engineer in Rural Development.	
	Module-II	
1.	Indira Awas Yojana - Salient features, beneficiary people, Conversion of	
	Unserviceable blouses into Pucca/Semi-Pucca houses.	9 Hours
2.	Credit-cum- Subsidy scheme of rural housing- Salient features, share of Central	
	and state Government,	
3.	Rural Building Centres-Purpose, technology transfer, skill development, training,	
	eco-friendly materials	
4.	Pradhan Mantri Gram Sadak Yojna (PMGSY) and Mahatma Gandhi National	
	Rural Employment Guarantee Act (MNREGA) Schemes- Key elements, concept	
	of rural road connectivity.	
	Module-III	
1.	Low-Cost Housing- Principles, purposes, use of Local Material for construction	
2.	Rural Roads-Type, Specifications, Construction Techniques and Road Drainage	

3. Bio	o mass – Types of fuel such as Firewood, agricultural residues, dung cakes	8 Hours	
4. Re	enewable energy and Integrated Rural Energy Programme -Objectives, key		
ele	ements, implementation, financial provisions, sources of renewable energy		
Worki	ng of Gobar gas and Biogas plant, National project on biogas development-		
techno	ology, performance and implementation, financial assistance, involvement of		
Pancha	ayat and local bodies		
	Module -IV		
1. Co	ottage Industry- Brick Manufacturing, Concrete hollow Block, Artificial		
Sa	ndstone crushing plant.	8 Hours	
2. Ag	gro based Industry- Dairy, Animal Husbandry, Horticulture, Sericulture, and		
Fis	shery		
3. sou	urces of funds for rural development Domestic (institutional and non -		
ins	stitutional) foreign institutional and non -institutional)		
	Module-V		
1. Plan and planning for rural development.			
2. Le	vels and Functions of Planning.		
1.	Micro-level Planning	8 Hours	
2.	meso-level Planning		
3.	macro-level Planning		
3. De	ecentralization policy of Planning.		
4. Blo	ock and District Level Planning.		
Cours	e Outcomes: On completion of this course, students are able to:	BL	
CO1:	Justify the necessity of planning for the development of the given rural area.	C2	
CO2:	Execute the relevant plan at the specified level of the given rural area.	C2	
CO3:	Describe the functions of planning at micro, meso and macro levels for the	C3	
	given rural area.		
CO4			
CO5	Describe the methodology used for executing the block and district level	C2	
	planning for the given rural area.		

- 1. V. M. Euler's and E. W. Steel, Municipal and Rural Sanitation, 6th Ed., McGraw Hill Book Company, 2009.
- 2. H. S. Peavy, D. R. Rowe and G. Tchobanoglous, Environmental Engineering, McGraw-Hill International Ed., 2013.
- 3. S. Gupta, Rural Water Supply and Sanitation, Vayu Education of India, New Delhi, 2013.

Reference books:

- 1. F. B. Wright, Rural Water Supply and Sanitation, E. Robert Krieger Publishing Company, Huntington, New York, 1977
- 2. K. Verma, Decentralized Governance in Water and Sanitation in Rural India, Academic Foundation, NEW DELHI, 2014.
- 3. Central Public Health and Environmental Engineering Organization, Manual on Water Supply and Treatment, 2nd Ed, Ministry of Urban Development, New Delhi December 1991.

Nptel Link: https://youtu.be/pv0PhvQ3G4k

OPTIMIZATION AND RELIABILTIY ANALYSIS				
Subject code	18CV7OE762	Credit: 03		
Hours/Week	3 hours. (Theory)	SEE: 50 Marks		
Total hours: 42 CIE: 50 Marks SEE: 3 hours				

Prerequisite:

Course objectives:

The objective of this course is to make students to learn principles of optimization, To implement the optimization Concepts for the structural engineering problems. To evaluate different methods of optimization.

Modules Teaching		
Wiodules		
Module I	Hours	
Introduction: Introduction to optimization, engineering applications of		
optimization, Formulation of structural optimization problems as programming		
problems. Optimization Techniques: Classical optimization techniques, single	8 Hours	
variable optimization, multivariable optimization with no constraints, unconstrained		
minimization techniques and algorithms constrained optimization solutions by		
penalty function techniques, Lagrange multipliers techniques and feasibility		
techniques.		
Module-II	9 Hours	
Linear Programming: Linear programming, standard form of linear programming,		
geometry of linear programming problems, solution of a system of linear		
simultaneous equations, pivotal production of general systems of equations, simplex		
algorithms, revised simpler methods, duality in linear programming.		
Module-III	8 Hours	
Non-linear programming: Non-linear programming, one dimensional minimization		
methods, elimination methods, Fibonacci method, golden section method,		
interpolation methods, quadratic and cubic methods, Unconstrained optimization		
methods, direct search methods, random search methods, descent methods	0.11	
Module -IV	9 Hours	
Constrained optimization: Techniques such as direct methods, the complex		
methods, cutting plane method, exterior penalty function methods for structural		
engineering problems. Formulation and solution of structural optimization problems		
by different technique Module-V	8 Hours	
	o Hours	
Geometric programming: Geometric programming, conversion of NLP as a sequence of LP/ geometric programming. Dynamic programming: Dynamic		
programming conversion of NLP as a sequence of LP/ Dynamic programming		
Course Outcomes: On completion of this course, students are able to:	BL	
CO1 Achieve Knowledge of design and development of problem-solving skills.	C2	
CO2 Understand the principles of optimization.	C2	
CO3 Design and develop analytical skills.	C2	
2 2 2 1 = 22-821 mas de l'els plantat de la santat		

CO4	Summarize the Linear, Non-linear and Geometric Programming	C3
CO5	Understands the concept of Dynamic programming	C3

Reference books:

- 1. Spunt, "Optimum Structural Design"- Prentice Hall
- 2. S.S. Rao, "Optimization Theory and Practice"- Wiley Eastern Ltd.
- 3. Uri Krisch, "Optimum Structural Design"- McGraw Hill
- 4. Richard Bronson, "Operation Research"- Schaum's Outline Series
- 5. Bhavikatti S.S.- "Structural optimization using sequential linear programming"- Vikas publishing house

Nptel Link: https://youtu.be/3Bh_viwz6_0

FINITE ELEMENT METHOD		
Subject code	18CV7OE763	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite: Strength of material, structural analysis-1, Structural analysis 2, and Numerical methods

Course objectives:

To enable the students to acquire the knowledge in the following topics:

- 1.To provide the fundamental concepts of the theory of the finite element method
- 2.To develop the ability to generate the governing finite element equations for systems governed by partial differential equations
- 3. To learn basic principles of finite element analysis procedure for structural applications using truss, beams, frame and plane elements.
- 4. To learn and apply finite element solutions to linear and non-linear Structural analysis problem and to develop the knowledge and skills needed to effectively evaluate finite element analyses performed by others.

5. Learn to model complex geometry problems and solution techniques.

Modules	Teaching Hours
Module I	
Introduction: - Basic concept, Background review of Theory of Elasticity, Matrix	8 hours
displacement formulation, Energy concept, Equilibrium and energy methods for	
analyzing structures, Rayleigh-Ritz method, Galerkin's method, Simple application	
in structural analysis.	
Module-II	
Fundamentals: - Displacement function and natural co-ordinates, construction of	8 hours
displacement functions for 2 D truss and beam elements, applications of FEM for	
the analysis of truss, continuous beam and simple frame problems.	
Module-III	
Analysis of 2 d continuum problems: - Elements and shape functions,	
Triangular, rectangular and quadrilateral elements, different types of elements,	
their characteristics and suitability for application, polynomial shape functions,	9 hours
Lagrange's and Hermitian polynomials, compatibility and convergence	
requirements of shape functions.	
Module -IV	
Theory of iso parametric elements: - Iso-parametric, Sub – Parametric and	9 hours
Super-parametric elements, Jacobian transformation matrix-numerical integration,	
plane stress and plane strain problems, characteristics of iso-parametric	
quadrilateral elements, structure of computer program for FEM analysis,	
description of different modules, pre and post processing.	
Module-V	
Development of stiffness matrix for plate bending element. Choice of displacement	8 hours
function (C0, C1 and C2), rectangular and triangular elements, mindlin elements.	
Course Outcomes: On completion of this course, students are able to:	

CO		BL
CO1	Understand the concepts behind variational methods and weighted residual methods in FEM.	C4
CO2	Identify the application and characteristics of FEA elements such as bars, Truss, beams, plane and isoperimetric elements, and 3-D element.	C4
CO3	Develop element characteristic equation procedure and generation of global stiffness equation will be applied.	C4
CO4	Able to apply Suitable boundary conditions to a global structural equation, and reduce it to a solvable form.	C4
CO5	Able to identify how the finite element method expands beyond the structural domain, for problems involving dynamics, Continuous beams, Trusses, portal frames, slabs, with different boundary conditions.	C4

- 1.Krishnamoorthy C.S., "Finite Element analysis" -Tata McGraw Hill
- 2. Desai C & Abel J F.," Introduction to Finite element Method", East West Press Pvt. Ltd.,
- 3. Cook R D et.al. "Concepts and applications of Finite Element analysis", John Wiley.

Reference books: .

- 1. C.S. Krishnamurthy "Finite Element Analysis Theory and programming" Tata Mcgraw Hill Co. Ltd., New Delhi.
- 2. J.F. Abel and Desai C.S. "Introduction to the Finite Element Method", Affiliated Eat West Press Pvt. Ltd., New Delhi.
- 3. Zeinkeiwicz O.C. "Finite Element Method", Tata Mcgraw Hill Co. Ltd., New Delhi.
- 4. Rajashekharan. S. "Finite Element analysis in engineering design", Wheeler Publishers.
- **5.** R D Cook and Passla. "Finite element analysis "

Nptel Link: https://youtu.be/KR74TQesUoQ

GLOBAL ENVIRONMENTAL ISSUES		
Subject code	18CV7OE764	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 hours

Prerequisite:

Course Objectives:

This course will cover a number of looming global environmental problems, what society can do about them, and the reasons why we aren't doing more. We will introduce a number of psychological and socio-economic factors that contribute to environmental issues, and use them to gain insight into and draw parallels between specific environmental problems

Modules	Teaching Hours
Module I	Hours
Introduction: Goals, history global environmental problems, pathologies	8 Hours
framework Population Growth, Fisheries Depletion, Eutrophication, Ocean	0 110015
Acidification, Biodiversity Loss	
Module-II	
Infectious Disease and Pandemic: Food Security Deforestation, Nuclear War,	
Solid waste management Control measures of urban and industrial waste, special	9Hours
reference e-waste, Biomedical waste e Pollution Tragedies Love canal, Bhopal Gas	
Endosulfan, Minamata and Flint water	
Module-III	
Effects: Effects on organisms including humans, effects on ecosystems and	8 Hours
productivity, species distribution ranges, spread of diseases, extinction risk for	
temperature-sensitive species and UV effects	
Module -IV	
Global warming and climate change: Evolution and development of Earth's	
atmosphere, atmospheric structure and composition, significance of atmosphere in	9Hours
making the Earth, the only biosphere; Milankovitch cycles, atmospheric windows	
Trends of global warming and climate change, drivers of global warming and	
Global Warming Potential (GWP) climate change, impact of climate change on	
atmosphere, weather patterns, sea level rise, agricultural productivity and	
biological responses-range shift of species, CO2 fertilization and agriculture;	
impact on economy and spread of human diseases	
Module-V	
Ozone layer depletion, environmental policy & agreements: Ozone layer or ozone shield; importance of ozone layer, ozone layer depletion and causes;	8 Hours
Chapman cycle, process of spring time ozone depletion over Antarctica, ozone	o Hours
depleting substances (ODS), effects of ozone depletion, mitigation measures and	
international protocols Environmental policy debate, International agreements,	
Montreal protocol 1987, Kyoto protocol 1997, Convention on Climate Change,	
carbon credit and carbon trading: clean development mechanism	

Course (Course Outcomes: On completion of this course, students are able to:	
CO1:	Understand the Environmental Issues and problems	C2
CO2:	Understand Biomedical waste e Pollution Tragedies	C3
CO3:	Information about spread of diseases, extinction risk fortemperature- sensitive species and UV effects	C3
CO4	Analyse the impact of climate change on atmosphere, weather patterns, sea level rise, agricultural productivity and biological responses-range shift of species, CO2 fertilization and agriculture; impact on economy and spread of human diseases	C4
CO5	Understand about Environmental and Global Acts	C3

Text Book

1. Hardy, JT 2003 Climate Change Causes, Effects and Solutions. John Wiley & Sons Harvey, D. 2000. Climate and Global Climate Change Prentice Hall

Reference books

- 1. Barry, R. G. 2003. Atmosphere, Weather and Climate. Routledge Press, UK asu, M.and Xavier, S., Fundamentals of Environmental Studies, Cambridge University Press, 2016
- 2. Mitra, A. K and Chakraborty, R., Introduction to Environmental Studies, Book Syndicate, 2016

Nptel Link: https://youtu.be/ID_gk0aSo0Y

COMPUTER AIDED DESIGN LABORATORY		
Subject code	18CVL77	Credit: 02
Hours/Week	2 hours. (Practical)	SEE: 50 Marks
Total hours: 28	CIE: 50 Marks	SEE: 3 hours
Prerequisite: NONE		
Course objectives:	the basic knowledge about in the fo	

Course objectives.		
To enable the students to obtain the ba	asic knowledge about in th	ne following topics: -

Modules		Teaching Hours	
1 4	LITOCAD. Due 62 and 66 Harris and a CAD and a CAD	0.11	
1. A	UTOCAD: - Drafting of following using AutoCAD package	8 Hours	
	a) Plan, Elevation and sectional view of 1BHK and 2BHK residential building.		
	(With Scale)		
	b) Reinforcement details of Beams, Slabs, Columns, Footings		
	& Staircases.		
	(Without scale)		
	c) Steel drawings such as beam to beam connections, column		
	to beam connections, Built up columns with lacing &		
	battens. (Without scale)		
2. C	reation of spread sheets using Microsoft Excel for	10 Hours	
	a) Design of singly reinforced beam.	_ 00	
	b) Design of doubly reinforced beam.		
	c) Design of Axially loaded column.		
	d) Design of One-way slabs.		
	e) Design of two-way slab.		
	f) Estimation of small building.		
	g) Estimation of small bridges		
		10 Hours	
	se of following civil engineering application software for		
	nalysis & design of 2D & 3D structures. (Maximum of 2 bay &		
2	story)		
	a) STAAD-PRO		
	b) ETABS		
Oues	Question paper pattern:		

Question paper pattern:

perform one question from each part for total three parts.

Text books:

AutoCAD manual, IS456-2000, Manual of STAADPro &Nisa software

Reference Books:

A.K. Jain – "Design of R.C. Structures" McGraw-Hill edition

E books and online course materials:

www.civilenggebooks.com

Course outcomes:

On completion of the course, the student will have the ability to:

CO#	Course Outcome (CO)	Blooms
		Level
CO1	Demonstrate the concepts of SOM theory course through series of	C2
	experiments.	
CO2	Share the responsibilities in small teams of 4-5 members for conducting the	C3
	experiments.	
CO3	Perform the experiments and determine	
	AutoCAD-Plan, elevation, RCC details, spread sheets using excel design of	
	singly, doubly RCC beams, axially loaded column, design of one-way slab,	
	two-way slab, estimation of building and bridge. STAAD-PRO, ETABS	
	parameters.	
CO4	Analyse the data and interpreted the results.	C4
CO5	Prepare a well-organized laboratory report.	C3

SEMINAR		
Subject code	18CV78	Credit: 01
Hours/Week		SEE: 50 Marks
Total hours:	CIE: 50 Marks	SEE:

Prerequisite: none

Course objectives:

To enable the students to obtain the knowledge about latest development in civil engg field such as new materials, construction techniques, design tools for structures (software's), environmental and water resource engg.

Seminar is intended to give an exposure to the students about recent trends and advances in various field of Civil Engineering. In view of this student shall select the topics from recently published literature in National and International Journal and also topics from conference proceedings of high standards approved by Guide.

Seminar shall be presented in the department in presence of a committee consisting of Batch of minimum two teachers including Guide constituted by HOD. The seminar marks are to be awarded by the committee. Students shall submit the seminar report in the prescribed standard format.

Question paper pattern:

Evaluation of CIE marks: Seminar will be evaluated by expert committee constituted by HOD consisting of guide and one expert faculty of the department in the relevant field. Students have to deliver seminar before expert committee.

Course outcomes:On completion of the course, the student will have the ability to

CO #	Course Outcome (CO)	Blooms Level
CO1	Identify a technical seminar topic using the criteria of recent trends in civil engineering, industrial development and societal issues.	C5
CO2	Collect exhaustive literature relevant to the selected topic	C2
CO3	Summarize effectively the literature review and provide the critical analysis of the selected topic.	C4
CO4	Present the seminar topic using good oral and writing skill.	C4
CO5	Prepare a well-organized and compiled seminar report.	C4

PROJECT PHASE-I		
Subject code	18CV79	Credit: 01
Hours/Week		SEE: 50 Marks
Total hours:	CIE: 50 Marks	SEE:

Course objectives:

To enable the students to conduct literature survey in the field of their interest in latest in civil engg field such as new materials, construction techniques, design tools for structures (software's), environmental and water resource engg.

Prepare a report containing literature review, objective, methodology.

Student shall select the topic of the project work and Guide in the beginning of the VII Sem only and shall complete the literature survey and finalize the objectives of the project work as part of Project phase-I by the end of the VII Sem. The project work will be carried out in batches containing maximum four students.

Project works can be taken up on different specializations of civil engineering preferably on emerging topics. Students have to present their project before expert committee constituted by HOD. Guide shall award the CIE marks based on performance of the students and after completion of literature survey. SEE will be conducted by one internal and external examiner appointed by HOD

Question paper pattern:

Evaluation of CIE marks: 60% marks will be evaluated by concerned guide on the basis of the performance of the student during project work remaining 40% marks will be evaluated by expert committee constituted by HOD containing minimum two experts of the department in the relevant field. Students have to deliver seminar before expert committee.

Evaluation of SEE marks: Viva-voce examination will be conducted in the presence of internal and external examiners appointed by HOD.

Course outcomes:

On completion of the course, the student will have the ability to:

CO#	Course Outcome (CO)	Blooms Level
CO1	Propose an engineering-based project in a clear and concise manner	C5
CO2	Identify and summarize the literature review and relate them to	C5
	current project.	
CO3	Formulate clearly a work plan and procedures consisting of fore	C4
	casting of project costs, time lines, quality & ethical issues	
CO4	Present the project outlining the literature review, methodology and	C5
	expected results using good oral and written presentation skills.	
CO5	Prepare a well-organized and compiled project report involving	C4
	literature review, methodology and expected results.	

INTERNSHIP		
Subject code		Credit:
Hours/Week		SEE: 50 Marks
Total hours:	CIE: 50 Marks	SEE:

Course objectives:

This course will enable students to get the field exposure and experience

Note: Internship / Professional Practice:

- 1. This shall be carried out by students in industry set-up related to the construction/ materials testing laboratories/research organizations/project management consulting firms/QS and QA organizations/ planning and design offices/Professional organizations like ACCE/ICI/INSTRUCT/RMCMA/QCI, PMI, CIDC etc. and other avenues related to the civil engineering domain in consultation and approval of internship guide/HOD /internship committees of the institutions.
- 2. The professional certification programs like ACCE(I)- SMP, ICI-BMTPC certifications, NSTRUCT certifications, CIDC certifications, RMC-QCI's RMCPCS Certification Programs, RMCMA-NRMCA'S Concrete Technologist India (CTI) programs and such similar programs by professional bodies with adequate industry exposures at sites/RMC plants can be considered as Internship /Professional Practice with due approvals from the guide/HOD /internship committees of the institutions
- 3. The industry/organization should issue certificates of internship offer and its completion. The offer letter should clearly have the nature of work to be done by the student and the supervisor's name and duration of internship.
- 4. The duration of the internship shall be 8 weeks. The student shall make a midterm and final presentation of the activities undertaken during the first 6 weeks and at the end of 12th week of internship respectively, to a panel comprising internship guide, a senior faculty from the department and head of the department. Each student should submit the internship report at the end of semester with internship certificate.
- 5. Viva-Voce examination shall be conducted by a panel of examiners consisting of internship supervisor from industry or industry professional approved by university and internship guide from the institute.
- 6. The College shall facilitate and monitor the student internship program.
- 7. The internship should be completed during vacation after VI and VII semesters.

SEMESTER VIII

DESIGN OF STEEL STRUCTURES		
Subject code	18CV81	Credit: 04
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours

Prerequisite: Civil Engineering Materials, Strength of Materials, Structural Analysis

Course objectives:

The objectives of this course are to learn:

- 1. Design philosophies, loads and load combinations
- 2. Behavior and design of fasteners typically bolted and welded and simple beam-column connections
- 3. Behavior and design of axially loaded members and column bases

Behavior and design of simple beams

Modules	Teaching Hours
Module I	
Introduction : Advantages and Disadvantages of Steel structures, Loads and Load combinations, Design considerations, Limit State Method (LSM) of design, Failure criteria for steel, Codes, Specifications and section classification.	3hours
Plastic Behavior of Structural Steel: Introduction, Plastic theory, Plastic hinge concept, Plastic collapse load, conditions of plastic analysis, Theorem of Plastic collapse, Methods of Plastic analysis, Plastic analysis of continuous beams	5 hours
Module-II	
Bolted connections : Introduction, Behavior of Bolted joints, Design strength of ordinary Black Bolts, Design strength of High Strength Friction Grip bolts (HSFG), Design of axially loaded and eccentrically loaded connections.	4 hours
Welded connections : Introduction, Welding process, advantages of Welding, Types and Properties of Welds, Types of joints, Weld symbols, Weld specifications, Effective areas of welds, Design of axially loaded and eccentrically loaded joints using fillet and butt welds.	4 hours
Module III	
Design of Tension Members : Introduction, Types of tension members, Design of strands, Slenderness ratio, Behavior of tension members, Modes of failure, Factors affecting the strength of tension members, Angles under tension, other sections, Design of tension member, Lug angles.	4hours
Design of Compression Members : Introduction, Failure modes, Elastic buckling of slender compression members, Sections used for compression members, Effective length of compression members, Design of compression members: angle struts, laced and battened built up compression members.	5hours

Module -IV	
Design of Beams : Introduction, Beam types, , Lateral stability of beams, factors affecting lateral stability, Behavior of simple and built-up beams in bending(I-sections with flange plates only without vertical stiffeners), Design strength of laterally supported beams in Bending, Design strength of laterally unsupported	8 hours
beams, Shear strength of steel beams, Maximum deflection, Design of beams.	
Module-V	
Design of column bases: Design of simple slab base and gusseted base subjected to axial loading. Design of concrete pedestal along with anchor bolt design for	4 hours
given uplift load.	
Design of beam to beam and beam to column connections: Design of simple framed and seated (un stiffened and stiffened) connections using bolting and welding.	5 hours
Course Outcomes: On completion of this course, students are able to:	
СО	BL
CO1: Explain different design philosophies and analyze continuous beams using plastic analysis technique	C4
CO2: Design axially loaded and eccentrically loaded bolted and welded connections	C4
CO3: Design axially loaded tension and compression members	C4
CO4 Design simply supported beams using single I section and simple built- up sections	C4
CO5 Design simple beam to column connections using bolting and welding	C4

- 1. N Subramanian., "Design of Steel Structures" (2016), Oxford University Press, New Delhi.
- 2. Duggal S K., "Limit State Method of Design of Steel Structures", Tata McGraw Hill, New Delhi.

Reference books:

- 1. Dayarathnam P, "Design of Steel Structures", Scientific International Pvt. Ltd.
- 2. Kazim S M A and Jindal R S, "Design of Steel Structures", Prentice Hall of India, New Delhi.
- 3. IS 800-2007: General Construction in Steel Code Practice (Third revision), Bureau of Indian Standards, New Delhi.

Nptel Link: https://youtu.be/CNE4hk_SGTo

ADVANCED RCC DESIGN		
Subject code	18CV821	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours

Elements of civil engineering and strength of material, structural analysis 1, structural analysis 2

Course objectives:

To enable the students to acquire the knowledge in the following topics

- 1.Understand the design procedure of cantilever & counterfort retaining walls
- 2.Understand the design procedure o circular & rectangular water tanks resting on ground.
- 3.Understand the design procedure of slab type & beam type combined footings.
- 4.Understand the base concept of yield line theory for the design of different shapes of RCC slabs. Understand the design concept of grid floors & flat slabs.
- 5.Understand the design procedure for continuous beams & single bay & single storey RC frames

Traines		
Modules	Teaching	
	Hours	
Module I		
Design and Detailing of RCC Retaining Walls: Different types of Retaining	8hours	
walls, types of backfill. Design & detailing of cantilever type retaining walls.		
Design & detailing of counterfort retaining walls.		
Module-II		
Design and Detailing of Water Tanks: Different types of water tanks, Design &	7hours	
detailing of circular water tanks resting on ground with flexible base & rigid base.		
Design & detailing of rectangular water tanks resting on ground with flexible base		
& rigid base.		
Module-III		
Design and Detailing of Combined Footing: Different types of combined	7hours	
footings. Design & detailing of slab type combined footing. Design & detailing of		
slab & beam type combined footing (Only Rectangular Footing)		
Module -IV		
Yield line theory: Introduction, basic ideas of yield line theory, location of yield		
lines for standard cases, yield line analysis of one way & two-way rectangular slab,	10 hours	
circular slab, hexagonal slab, triangular slab & design of different shapes of slabs.		
Design of grid floor and flat slabs: Introduction, analysis & design of grid floors		
by approximate & plate theory, design of flat slabs		
Module-V		
Design of continuous beams and portal frames: Introduction, effective span, and	10 hours	
calculation of BM & SF, design of continuous beams by limit state method, design		
and detailing of single bay, single story portal frame (hinged & fixed) for with		
analyzed data, reinforcement detailing		

Course Outcomes: On completion of this course, students are able to:		
		Blooms
CO		Level
CO1:	Design of cantilever and counterfort retaining walls.	C4
CO2:	Design of circular and rectangular water tanks resting on ground.	C4
CO3:	Design of slab type and slab & beam type combined footings	C4
CO4	Design of circular slab, grid floors and flat slabs	C4
CO5	Design of continuous beams and portal frames	C4

- 1. Dr. S. S. Bhavikatti "Advanced RCC Design" Unnikrishnan Pillai and Devdas Menon, "Reinforced Concrete Design", McGraw Hill, New Delhi
- 2. Subramanian, "Design of Concrete Structures", Oxford university Press
- 3. H J Shah, "Reinforced Concrete Vol. 1 (Elementary Reinforced Concrete)", Charotar Publishing House Pvt. Ltd.

Reference books: .

- 1. N. Krishna Raju, "Design of Advanced Reinforced concrete structures" CBS publishers, New Delhi.
- 2. A.K. Jain "Limit State method of design" Nemichand and Bros., Roorkee
- 3. Park & Paulay "Reinforced Concrete", John Wiley & Bros.
- 4. B.C. Punmia, Ashok kumar Jain & Arun kumar Jain "Limit State design of Reinforced concrete", Laxmi Publication, New Delhi.
- 5. V. Ramakrishnan & P. D. Arthur, "Ultimate strength design of structural concrete", Wheeler Books, Allahabad
- 6. IS 456-2000, SP 16

Nptel Link: https://youtu.be/undsd92MM8w

DESIGN OF PRESTRESSED CONCRETE STRUCTURES				
Subject code 18CV822 Credit: 03				
Hours/Week	3 hours. (Theory)	SEE: 50 Marks		
Total hours: 42 CIE: 50 Marks SEE: 3 Hours				

Course objectives:

- 1. Explain the fundamental concepts of stress analysis
- 2 Apply systems of pre-stressing for various sections of structural elements
- 3 Evaluate and analyze the stresses under various conditions
- 4 Design and detail the prestressed concrete members for various loading conditions

4 Design and detail the prestressed concrete members for various loading conditions		
Modules	Teaching	
	Hours	
Module I		
Introduction to Pre stressed concrete and codal provisions:		
Introduction: Historic development- general principles of Prestressing, Types of prestressing, pre-tensioning and post tensioning, advantages and limitation of prestressed concrete, Materials for pre stressed concrete- high strength steel and concrete, properties, Stress-strain characteristics of high strength steel and concrete Codal Provisions: Basic principles of pre stressing, fundamentals of prestressing, load balancing concept, Stress concept, center of thrust, Pre-Tensioning and post tensioning methods-Analysis of pre and post tensioning, Systems of pre stressing, End anchorages	9 Hours	
Module-II		
Analysis of sections for Flexure: Elastic analysis of pre stressed concrete beams with straight, parabolic, triangular, trapezoidal cable profiles, Eccentric and concentric pre stressing, Numerical problems	8 Hours	
Module-III		
Losses of Pre stress : Loss of prestress in pretensioned and post tensioned members due to elastic shortening of concrete, shrinkage of concrete, creep of concrete, relaxation of steel, slip in anchorage and frictional losses, Numerical problems	8 Hours	
Module -IV		
Deflection of pre stressed concrete beams: short term and long-term deflections, Elastic deflections under transferred loads and due to different cable profiles, Deflection limits as per IS 1343, Effect of creep on deflection, Load versus deflection curve, methods of reducing deflection, Numerical problems. Limit state of Collapse: Flexure- IS code recommendations, Ultimate flexural strength of sections, IS code recommendations on shear strength, Shear resistance of sections, shear reinforcement, Limit state of serviceability- Control of deflection and cracking, Numerical Problems	9 Hours	
Module-V		
Design of Beams: Design of pre stressing force and eccentricity for post tensioned prismatic beams, permissible stresses, Limiting zone and cable profile	8 Hours	

Course Outcomes: On completion of this course, students are able to:		BL
CO1:	CO1: Understand the fundamental concepts of stress analysis	
CO2:	Apply systems of pre-stressing for various sections of structural elements	C2
CO3: Analyse and evaluate the stresses under various conditions		C3
CO4 Design the prestressed concrete members for various loading conditions		C4
CO5	Design of Prestressed Beams	C4

Krishna Raju, N. "Pre stressed Concrete", Tata McGraw Hill Publishing Company, New Delhi 2006

- 2. Krishna Raju. N., "Pre-stressed Concrete Problems and Solutions", CBS Publishers and Distributors, Pvt. Ltd., New Delhi.
- 3. Rajagopalan N, "Pre stressed Concrete", Narosa Publishing House, New Delhi

Reference books:

- 1. Prestressed concrete, N Krishna Raju, Tata McGraw Hill Publishers, 2009,
- 2 Prestressed Concrete, P Dayarathnam, Oxford and IBH Publishing Co., 2000,
- 3. Design of pre stressed concrete structures, T Y Lin and Ned H Burns, John Wiley & Sons, New York, 2008
- 4.Fundamental of pre stressed concrete, N C Sinha and S K Roy, 3rd Edition, S Chand and Company Ltd, 2011
- 5. Code Books: IS 1343:2012; Pre stressed Concrete: Code of practice

Nptel Link: https://youtu.be/4KYPltsNAWs

DESIGN OF HYDRAULIC STRUCTURES		
Subject code	18CV823	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours

Prerequisite: The students should have knowledge of Engg. Mechanics, Hydrology & water resources engineering

Course objectives:

The students will be able to acquire knowledge in the following topics The students will be able to acquire knowledge in the following topics

- 1. Design of canals and silt theories
- 2. Design of cross drainage works
- 3. Canal regulators
- 4. Design of weirs and barrages
- 5. Design of spillways and outlets

5. Design of spinways and outlets	
Modules	Teaching Hours
Module I	
Design of canals and silt theories: Types of silt, Kennedy's theory and design of	
lined & Unlined canals by Kennedy's theory, Defects of Kennedys theory, Silt	
supporting capacity, lacey's regime theory, lacey's equation for velocity, discharge	8 Hours
and silt factor, Design of canals by Lacey's theory. Transportation of sediments,	
Drawbacks of Lacey's theory, comparison between kennedy's and lacey's theory.	
Module-II	
Design of Cross Drainage work: Introduction, classification, various types of aqueducts and siphon aqueducts, design consideration for cross drainage works, fluming of canal, Mitra's hyperbolic transition formula, Design of back connection canals, canal wings, and drainage wings (Hydraulic design only). Design of aqueduct and siphon aqueduct.	9 Hours
Module-III	
Canal regulation works: Purpose, canal falls, location, types of Regulators, ogee falls, rapid falls, stepped falls, vertical drop fall, Montague type fall, Inglis type fall, methods of energy dissipation, head regulators, cross regulators, pipe outlet, design of cistern, design of sarda type fall.	8 Hours
Module -IV	
Design of weirs and theory of seepage: Bligh's creep theory, safety against piping and uplift, Khosla's theory, flow nets, exit and critical gradient, Khosla's method, design of vertical drop weir, Body wall, crest wall of a weir, design of impervious floor and Impervious aprons	8 Hours
Module-V	
Spillways and outlets: Types, location of spillway, design consideration for	9 Hours
spillway, ogee spillway, free overfall and siphon spill way, energy dissipation,	
scour protection, Design of spillway crest gates, outlet works, design of outlets and	

sluices of different type.		
Course	Outcomes: On completion of this course, students are able to:	
CO		BL
CO1:	The students will be able to design canals	C1, C3,
CO2:	The students will understand necessity & Design of CD works	C2, C3, C4
CO3:	The students will be able to design Regulators	C2C3, C4
CO4	The students will be able to design weirs and analyse for controlling	C2, C3, C4
	Seepage	
CO5	The students will be able to design spillways & Outlets	C2, C3, C4

- 1. Dr. PN Modi & Seth, Hydrology & Water Resources Engg. Standard Publishers, New Delhi
- 2.R.K. Sharma and Sharma Hydrology and Water Resource Engineering
- 3.Linsley, Kohler and Paulhus: Applied Hydrology, McGraw Hill, New Delhi
- 4.Garg. S.K: Hydrology and Water resources engineering, Khanna Publications

Reference books:

- 1. Linsley & Frazini, Water Resources Engineering, McGraw-Hill international Edition
- 2. Birdie G S & Das, Hydrology & Water Resources Engineering, Dhan path rai Publishers New Delhi
- 3. B.L. Gupta& Amit Gupta, Water resources systems and management, Standard Publishers distributers New Delhi

Nptel Link: https://youtu.be/FYYJgSMjYB4

DESIGN OF EARTHQUAKE RESISTANT STRUCTURES		
Subject code	18CV824	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours

Prerequisite: Engg Geology, Design of RCC structures, Structural dynamics.

Course objectives:

To enable the students to acquire the knowledge in the following topics:

- 1. Different types of earthquakes and different seismic instruments.
- 2. Analysis, Design of building according to earthquake design philosophy.
- 3. Structural configuration of earthquake resistance design.
- 4. Concept of ductility and design of column and beams with reference to ductility as per codal provisions.
- 5. Design of masonry building in shear flexure.

Modules	Teaching
	Hours
Module I	
Introduction to endogenic processes, Tectonic and volcanic earthquakes, General	
features of earth quakes with regard to Indian continent, magnitude and intensity	8 hours
scales, and seismic instruments	
Module-II	
Seismic design philosophy, determination of design lateral forces, dynamics of	
multi storey building- natural frequencies and mode shapes, analysis of multi	10 hours
storey building using is-1893.	
Module-III	
Structural configuration for earthquake resistant design, frames, shear walls and	8 hours
dual systems, effect of infill masonry walls on frames, capacity design procedures.	
Module -IV	8 hours
Ductility and energy absorption in buildings, confinement of concrete for ductility,	
ductility of columns and beams – code provisions, problem of soft storey	
Module-V	
Behavior of masonry building during earthquake failure pattern, strength of	8 hours
masonry in shear and flexure, codal provisions for earthquake resistant masonry	
buildings.	
Course Outcomes: On completion of this course students are able to:	

Course Outcomes: On completion of this course, students are able to:

CO		BL
CO1:	Explain different types of earthquakes and their features &working of different seismic instruments.	C2
CO2:	Analyse multistory building for determining natural frequencies & mode	
	shapes using static and dynamic techniques.	C4
CO3:	Compare performance of different structural configuration for earthquake	C5
	resistance design.	
CO4	Design columns &beams with reference to ductility using codal provisions.	C4

CO5	Determine strength of masonry buildings in shear, flexure &failure pattern	C4
	during earthquake.	

Question paper pattern:

Two questions is to be set from each module by intermixing the topic in the same module. Total five questions to be answered by selecting minimum one question from each module.

Text book:

Pankaj Agarwal and Manish Shrikande, "Earthquake resistant design of structures", PHI India.

- 2. S.K. Duggal, "Earthquake Resistant Design of Structures", Oxford University Press
- 3. Anil K. Chopra, "Dynamics of Structures: Theory and Applications to Earthquake Engineering", Pearson

Education, Inc.

4. T. K. Datta, "Seismic Analysis of Structures", John Wiley & Sons (Asia) Ltd.

Reference books: .

- 1. David Dowrick, "Earthquake resistant design and risk reduction", John Wiley and Sons Ltd.
- 2. C. V. R. Murty, Rupen Goswami, A. R. Vijayanarayanan& Vipul V. Mehta, "Some Concepts in Earthquake

Behaviour of Buildings", Published by Gujarat State Disaster Management Authority, Government of Gujarat.

- 3. IS-13920 2016, Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces, BIS, New Delhi.
- 4. IS-1893 2016, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1, BIS, New Delhi.
- 5. IS- 4326 2013, Earthquake Resistant Design and Construction of Buildings, BIS, New Delhi.
- $6.\ \mathrm{IS}\text{-}13828-1993$, Indian Standard Guidelines for Improving Earthquake Resistance of Low Strength Masonry

Buildings, BIS, New Delhi.

7. IS-3935 – 1993, Repair and Seismic Strengthening of Buildings-Guidelines, BIS, New Delhi.

Nptel Link: https://youtu.be/m00cSWtRK9w

ADVANCED STEEL STRUCTURE DESIGN		
Subject code	18CV825	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours

Prerequisite: Civil Engineering Materials, Strength of Materials, Structural Analysis, Design of steel structures-I

Course objectives:

To enable the students to obtain the basic knowledge about in the following topics: -

- 1. Behaviour and design some specialized steel structures such as plate girder, gantry girder, and tubular structures.
- 2. Components and design of roof trusses for the given analysed forces.
- 3. Behaviour and design of rigid and semi rigid beam-column connections

	Modules	Teaching Hours
	Module I	
_	of welded plate girder: Design of welded plate girder along with s, connection design, curtailment of flange	9 Hours
	Module-II	
Design	of gantry girder: Design of gantry girder for electrically and	8 Hours
manuall	y operated travelling crane in single bay	
	Module-III	
Design	of roof trusses: Types of roof trusses, design of a typical roof truss	9 Hours
(Forces	in the members to be given), design of joints and end bearing,	
design o	f purlins.	
	Module -IV	
	of rigid and semirigid connections: Design of Small moment	8 Hours
	connections, large moment resistant connections, semi-rigid and	
behavio	r of semi-rigid connections	
	Module-V	
_	of Tubular structures – Introduction, permissible stresses, tubular	8 Hours
	s, tube tension members. Design of members of tubular roof truss	
	n member forces and the joints in tubular trusses, design of tubular	
	nd purlins.	
Course	Outcomes: On completion of this course, students are able to:	BL
CO1:	Design the welded plate girder	C5
CO2:	Design the gantry girder	C5
CO3:	Design the roof trusses	C5
CO4	Design rigid beam- column connections and explain the behavior or igid connections	f semi C5
CO5	Design the axially loaded and flexural tubular structural members	C5

- 1. N Subramanian., "Design of Steel Structures" (2016), Oxford University Press, New Delhi.
- 2. Duggal S K., "Limit State Method of Design of Steel Structures", Tata McGraw Hill, New Delhi.

Reference books:

- 1. Dayarathnam P, "Design of Steel Structures", Scientific International Pvt. Ltd.
- 2. Kazim S M A and Jindal R S, "Design of Steel Structures", Prentice Hall of India, New Delhi.
- 3. IS 800-2007: General Construction in Steel Code Practice (Third revision), Bureau of Indian Standards, New Delhi.

Nptel Link: https://youtu.be/CNE4hk_SGTo

ENGINEERING ECONOMICS AND MANAGEMENT		
Subject code	18CV8OE831	Credit: 03
Hours/Week	3 hours. (Theory)	SEE: 50 Marks
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours

Prerequisite: Building material and construction, Building planning and drawing, Estimation

Course objectives:

To enable the student to acquire the knowledge in the following topics: -

- 1. Planning scheduling controlling bar chart mild stone chart elements of a network and PERT network analysis for a project.
- 2. Probability of meeting the scheduled date for PERT network, CPM Network analysis and cost model.
- 3.Resource allocation (man power) and economics concepts.
- 4.To apply economy in design material selection, location and standardization. Interest and interest formulae.
- 5.Compare the alternatives in civil engg problem using PW, AE, FW and rate of return. Evaluate replacement alternatives breakeven and minimum cost analysis and benefit cost analysis for civil engg problems.

analysis for civil eligg problems.	
Modules	Teaching
	Hours
Module I	
Engineering Management:	
Project Management: Introduction, planning scheduling, controlling, bar charts	
and milestone charts. Elements of network- event, activity, dummy activity,	5 hours
network rules, numbering of events, problems.	
Network Analysis: PERT network, uncertainties in PERT network, time	
estimates, earliest expected time (T _E) latest allowable occurrence time (T _L),	4 hours
slack, critical path,	
Module II	
Probability of meeting the scheduled date for PERT network.	4 hours
CPM network analysis- Activity time estimates, start and finish times of activity,	
float, critical path.	
Cost Model: Costs involved in a project, total project cost, optimum duration	4 hours
and optimum cost, contracting network for optimization.	
Module III	
Engineering Management:	
Resource Allocation: Resource smoothing and resource levelling.	4hours
Introduction to Management software package "Primavera"	
Engineering Economics:	3hours
Economic Concepts: Economy deals with behavior of people, value and utility,	
consumer and producer goods, economy of exchange, classification of cost, price	
is determined by supply and demand, law of diminishing return.	

26.1.1.777	
Module IV	
Elementary Selection in Economic Analysis:	
Design and economy, economy of material selection, perfection and economy, size and economy, economy and location, economy of standardization and	3 hours
simplification.	
Interest and Interest Formulas: Interest rate and interest, earning power of money, time value of money, interest formulas, annual compounding interest-	5 hours
annual payments, nominal and effective interest rates, interest formula for continuous compounding.	
Module V	
	5 hours
Basis for Comparison of Alternatives: Present worth amount, annual	
equivalent amount, future worth amount, rate of return.	
Evaluating replacement alternatives, breakeven and minimum cost analysis,	
benefit cost analysis.	

Question paper pattern:

Two questions is to be set from each module by intermixing the topic in the same module. Total five questions to be answered by selecting minimum one question from each module.

Text books:

Christopher Sheldon and Mark Yoxon, "Installing Environmental management Systems – a step by step guide" Earthscan Publications Ltd, London, 1999.

- 2. ISO 14001/14004: Environmental management systems Requirements and Guidelines International Organization for Standardization, 2004
- 3. ISO 19011: 2002, "Guidelines for quality and/or Environmental Management System auditing, Bureau of Indian Standards, New Delhi, 2002

Reference Books:

- 1) CPM and PERT by "Punmia"
- 2) CPM and PERT by "LS.Srinath"
- 3) Engineering Economics by "Theusen"

E books and online course materials:

www.civilenggebooks.com

Nptel Link: https://youtu.be/ycyMktNFZ88

Course outcomes:

On completion of the course, the student will have the ability to:

CO#	Course Outcome (CO)	Blooms
		Level
CO1	Prepare the schedule for drawing milestone chart, CPM and PERT	C5
	network for a project	
CO2	Analyze CPM and PERT network for determining optimum cost and	C4
	duration for a project.	
CO3	Allocate and Level resource for a project.	C5
CO4	Apply the concepts and principles of economics for civil engineering	C4
	problems	
CO5	Evaluate different alternatives for project using Present worth, Future	C5
	worth and Annual equivalent	

ENVIRONMENTAL IMPACT ASSESSMENT			
Subject code	18CV8OE832	Credit: 03	
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours	

Course objectives:

- 1.To study factors to be considered for preparing an Environmental Impact Statement
- 2 To study the principles, methodologies and techniques of Environmental Impact Assessment (EIA)
- 3 To study mitigation techniques and study of alternatives.
- 4 To prepare EIA for specific case studies.

Modules	Teaching
M. J. I. I	Hours
Module I	
Introduction: Impact of developmental projects — sustainable development — Need for Environmental Impact Assessment (EIA), Rapid and Comprehensive EIA, Environmental Impact statement (EIS) — EIA capability and limitations — Legal provisions on EIA — stages of EIA.	8 Hours
Module-II	
Role of NEPA in EIA, CEQ, Environmental documents. IA/ EIS& FONSI relationship, processing of EIA/EIS, Environmental attributes. Methodologies: Criteria to be considered for the selection of EIA methodologies, Adhoc, overlays, Check lists – Matrices – Networks – Cost-benefit analysis with their advantages and limitations	9 Hours
Module-III	
Guidelines for preparation of EIA Prediction and Assessment: Assessment of Impact on land, water, air and noise. Social and cultural activities and on flora and fauna – mathematical models – public participation.	9 Hours
Module -IV	
Environment management plan: Plan for mitigation of adverse impact on Environment– Options for mitigation of impact on water, air, land and on flora and fauna – Addressing the issues related to project affected people. Post project monitoring. ISO 9000, 14000 &18000.	8 Hours
Module-V	
Case Studies: EIA for the infrastructure projects –Airport, Dam, Highway, Multistorey buildings, water supply and drainage projects, Hazardous waste landfill site.	8 Hours
Course Outcomes: On completion of this course, students are able to:	
CO1: Carryout scoping and screening of developmental projects for environmental and social assessments.	C2
CO2: Explain different methodologies for environmental impact prediction and assessment.	C3
CO3: Prepare environmental management plans	C3

CO4	Evaluate environmental impact assessment reports and roles, actions that citizens and interest groups can take to influence the EIA process and outcome.	
CO5	Understand about the Case Studies	C3

- 1.Environmental Impact Assessment, Larry W Canter, McGraw-Hill Inc. ISBN: 10-0071141030, 13-9780071141031, 1996,
- 2. Environmental Impact Analysis Handbook, John G. Rau and David C Hooten (Ed), McGrawHill Book Company, 10-0070512175, 13-9780070512177, 1980 Reprint 2013.
- 3. Concepts in Environmental Impact Analysis, Shukla, S.K. and Srivastava, P.R., Common Wealth Publishers, New Delhi, 10- 8171692087, 13- 9788171692088, 1992 Reprint 2013

Reference books:

- 1. Environmental Impact Analysis, 2nd Edition, R.K.Jain, Mc Graw- Hill , Newyork, 2002, ISBN 9780071370080
- 2. Environmental Impact Assessment, Y.Anjaneyulu CRC press, ISBN 10-0415665566, 13-9780415665568, 2011

Nptel Link: https://youtu.be/xPO1qIZOtY0

AIR POLLUTION AND CONTROL			
Subject code	18CV8OE833	Credit: 03	
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours	

Prerequisite: Environmental engg-1, Environmental engg-2

Course objectives:

To enable students to acquire the knowledge in the following topics:

- 1. To enable the students to understand fundamentals of air pollution.
- 2. Enable the students to understand meteorology and air pollution.
- 3. Enable the students to understand measurement of pollutants.
- 4. Students to understand about control equipment's.
- 5. Students to understand about location of industries

	Modules	Teaching
		Hours
	Module I	
	Definition, classification, properties of air pollutants, primary and	4 hours
	llutants, point source, mobile sources and sources of air pollution	
Effects of air pollution epis	pollution: On human health, animals, plants and properties. Major air odes	6 hours
F	Module-II	
Meteorology:	Meteorological variables, lapse rate, inversion, stability conditions,	6 hours
-	ime behaviors, Gaussian behavior or Gaussian dispersion model.	
Air quality st	andards – Clean dry air constituents.	3 hours
	Module-III	
Sampling and	analysis: sampling and measurement of gaseous and particulate	5 hours
pollutants.		
Emission star	ndards	2 hours
Module -IV		
Control of air pollutants: control methods-particulate emission control,		
gravitational settling chambers, cyclones, fabric filters, electrostatic precipitators,		
wet scrubbers		
	Module-V	
Industrial plant locations and planning. Emission standards.		
Automobile exhaust gases		
Course Outc	omes: On completion of this course, students are able to:	,
CO		BL
CO1:	Classify and explain various constituents of clean dry air and	
	pollutants.	C2
CO2:	Explain the effects of air pollution on humans, animals and	
	properties.	C2
CO3:	Sampling and analysis of gaseous and particulate pollutants,	
	environmental impact assessment.	C3
CO4	Understand air pollution control equipment's to minimize pollution.	

		C3
CO5	Identify air quality and emission standards. Become professional	C3
	consultant to work for air pollution monitoring.	
Reference bo	oks:	
1. Air Po	ollution: HVN Rao and M N Rao	
2. Enviro	onmental Pollution Control: C S Rao	
Air Pollution:	Henry Perkins	
Nptel Link:	nttps://youtu.be/4AuwG2G_ERU	
_		
E-Books: ww	vw.civilenggebooks.com	

ENVIRONMENTAL PLANNING AND MANAGEMENT			
Subject code	18CV8OE834	Credit: 03	
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours	

Course objectives:

To enable students to acquire the knowledge in the following topics:

- 1. To enable the students to understand fundamentals of Environmental Management
- 2. Enable the students to understand meteorology and Management

∠. Enao	ie the students to understand meteorology and Management	
	Modules	Teaching Hours
	Module I	
Environ	ment and sustainable development: Importance of Planning – local,	8 Hours
regional,	state and national planning concepts, site and location with reference to	
environn	nental pollution. Zoning – physical planning.	
	Module-II	
Econom	ics of pollution control: Cost benefit ratios, total cost of development and	9 Hours
environn	nental protection cost. Reliability and risk anlaysis, case studies on	
	carrying capacity, National capital region – Delhi area.	
	Module-III	
Environ	mental education: Introduction, objectives, formal and non-formal	9 Hours
education	n. Organizational structure for Environmental Management at central and	
state leve	els	
Cleaner	technologies and their role in environmental management: Total	
Quality I	Management (TQM) in environmental management and protection, ISO –	
14000 Se	eries of standards.	
	Module -IV	
Legislation related to environmental management: Water, Air, Environmental		8 Hours
protectio	n, Wild life protection, Forest conservation, Motor vehicle act, Hazardous	
waste, Biomedical waste and Noise pollution		
Internat	ional efforts for environmental protection: Stockholm Conference –	
	NEP - 1982, control of transboundary movements and disposal of	
hazardou	s wastes, Earth Summit – 1992, Montreal Protocol, Kyoto and Copen	
Hagen Pi	rotocols, Manila declaration.	
	Module-V	
	mental protection: Economic development and social welfare	8 Hours
	ation in socioeconomic development policies	
	Outcomes: On completion of this course, students are able to:	BL
CO1:	Appreciate the elements of Corporate Environmental Management	C2
	systems complying to international environmental management system	
	standards.	
CO2:	Lead pollution prevention assessment team and implement waste	C2

	minimization options.	
CO3:	Develop, Implement, maintain and Audit Environmental Management	C3
	systems for Organizations.	
CO4	Understand International efforts for Environmental impact	C3
CO5	Analyse the environmental protection methods	C4

1. Christopher Sheldon and Mark Yoxon, "Installing Environmental management Systems – a step by step

guide" Earthscan Publications Ltd, London, 1999.

- 2. ISO 14001/14004: Environmental management systems Requirements and Guidelines International Organization for Standardization, 2004
- 3. ISO 19011: 2002, "Guidelines for quality and/or Environmental Management System auditing, Bureau of Indian Standards, New Delhi, 2002
- 4. Paul L Bishop "Pollution Prevention: Fundamentals and Practice, McGraw-Hill International, Boston, 2000.
- 5. Environmental Management Systems: An Implementation Guide for Small and Medium-Sized Organizations, Second Edition, NSF International, Ann Arbor, Michigan, January 2001.

Reference books:

1. Danoy G.E., and Warner R.F. (1969), Planning and Design of Engineering Systems, Unwin Hyman

Publications.

- 2. Chanlet Emil T, (1973), Environmental Protection, Mc Graw Hill Publication.
- 3. Lohani B.N, (1984), Environmental Quality Management, South Asian Publishers, New Delhi
- 4. Environmentally Sustainable Development UNEP / UNDP.
- 5. J. Glynn Henry; Gary W. Heinke, (1997), Environmental Science and Engineering, American Institute of

Biological Sciences.

- 6. Journal of Indian Association for Environmental Management, 1995-1997.
- 7. Carrying Capacity Based Developmental Planning Studies for the National Capital Region MOEF,

Government of India (1995-1996). NEERI (1995 and 1996)., Nagpur, Annual Reports

8. Suresh K., and Dhameja, (2000), Environmental Engineering and Management, S.K. Kataria & Sons.

Nptel Link: https://youtu.be/-j1rjB_-DhI

DISASTER MANAGEMENT			
Subject code	18CV8OE835	Credit: 03	
Hours/Week	3 hours. (Theory)	SEE: 50 Marks	
Total hours: 42	CIE: 50 Marks	SEE: 3 Hours	

Course objectives:

- 1 Study the environmental impact of natural and manmade calamities
- 2 Learn to analyze and assess risk involved due to disasters.
- 3 Understand the role of public participation.
- 4 Learn the management tools and mitigation techniques.

Modules	Tasakina
Modules	Teaching
76.1.1.7	Hours
Module I	
Natural disasters and Disaster management	
Introduction to natural and Industrial Hazards- floods, landslides, earthquakes,	
volcanoes, avalanche, cyclones, drought, fire, release of effluents, harmful gases,	8 Hours
Blast etc. Prediction and perception. Environmental risk due to project activities.	
Preparation of on-site and off-site disaster management plans - Pre disaster, actual	
disaster, Post disaster plans. Relief camp organization. Role of voluntary	
organization and armed forces during disasters	
Module-II	
Risk analysis and assessment	9 Hours
Basic concept. Purpose of risk analysis. Analytical techniques and tools of risk	
assessment. Toxicology. Significance of risk. Risk characterization. Risk	
communication and Management, AI in emergency responses.	
Module-III	
Environmental Impact Assessment (EIA)	
Definition, Basic concepts and principles of EIA. Regulatory framework in India.	8 Hours
Environmental inventory. Base line studies. Over view of EIA studies	
Module -IV	
Assessment and Methodologies Physical, Biological, Natural resources, Socio	
economic and cultural environmental assessment. EIA methodologies- Adhoc,	
Matrix, Checklist approaches. Economic evaluation of impacts- cost benefits of	8 Hours
EIA. Public participation in environmental decision making. Procedures for	
reviewing EIA analysis and statement. Decision methods for evaluation of	
alternatives.	
Module-V	
Disaster Mitigation and Management Introduction, types, modes of disaster	
management, tools and techniques, primary and secondary data. Natural disasters its	8 Hours
causes and remedies-Earthquake Hazards-Causes and remedies, Flood and Drought	
assessment, causes and remedies, Landslides-causes and remedies. Fire hazards in	
buildings, Fire hazard management, Traffic management, Cyclones and hurricanes,	
inter department cooperation. Regional and global disaster mitigation.	
Disaster management Act, Disaster management authority at central, state and	

distric	t levels.			
Course Outcomes: On completion of this course, students are able to:				
CO1:	Explain the different types of disasters and manage the pre and post disaster situation.			
CO2:	Estimate and communicate the risk by conducting the risk assessment and Environmental			
	Impact Assessment			
CO3:	Identify the methods of disaster mitigation based on the basis of the risk assessment.			
CO4	Analyze and evaluated the impact of measures adopted to mitigate the impacts.			
CO5				

- 1. David Dowrick, "Earthquake resistant design and risk reduction", John Wiley and Sons Ltd.
- 2. C. V. R. Murty, Rupen Goswami, A. R. Vijayanarayanan& Vipul V. Mehta, "Some Concepts in Earthquake Behaviour of Buildings", Published by Gujarat State Disaster Management Authority, Government of Gujarat.
- 3. IS-13920 2016, Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces, BIS, New Delhi.
- 4. IS-1893 2016, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1, BIS, New Delhi.
- 5. IS- 4326 2013, Earthquake Resistant Design and Construction of Buildings, BIS, New Delhi.
- 6. IS-13828 1993, Indian Standard Guidelines for Improving Earthquake Resistance of Low Strength Masonry Buildings, BIS, New Delhi.
- 7. IS-3935 1993, Repair and Seismic Strengthening of Buildings-Guidelines, BIS, New Delhi

Reference books:

Environmental Impact Analysis Hand Book, John G Rau and David C Wooten, Edition: 2013, ISBN: 978-0070512177.

- 2 Introduction to environmental Impact assessment, John Glasson, Riki Therivel, Andrew Chadwick, Edition: 2012, Research Press, ISBN:000-0415664705.2005, Reliance Publishing House, New Delhi.
- 3 Natural Disaster Reduction, Girish K Mishrta, G C Mathew (eds), Edition, 2005, Reliance Publishing House, New Delhi,
- 4 Remote Sensing and Image Interpretation, Thomas M. Lillisand and R.W. Keifer, 6th Edition, 2002, John Wiley, ISBN:9780470052457.

Nptel Link: https://youtu.be/DExlZTfKZAM

CERTIFICATION COURSE(NPTEL/MOOCS)					
Subject code	18CVMC84	Credit: 01			
Hours/Week		SEE: 50 Marks			
Total hours:	CIE: 50 Marks	SEE: 3 Hours			

Prerequisite: None

Course objectives:

To enable the students to get exposure to Recent trends in the field related to civil Engg.

Every student should undergo National Programme on Technology Enhanced Learning (NPTEL) Online certification course for the duration of 4 Weeks to 8 Weeks.

For more details on these online courses under NPTEL you may visit the link http://onlinecourses.nptel.ac.in which are similar to the MOOCS offered in platforms like edX, Coursera etc can be offered under this initiative.

PROJECT WORK (PHASE II)				
Subject code	18CVP85	Credit: 08		
Hours/Week		SEE: 50 Marks		
Total hours:	CIE: 50 Marks	SEE: 3 Hours		

Prerequisite: None

Course objectives:

To enable the students to conduct the project in the field related to civil engg such as construction materials, drinking water, waste water or design of structures, pavement, irrigation structures, Analysis of structures using latest software's.

Project work Phase-II shall be carried out in par with literature survey and the objectives finalized in Project Phase-I.

The project report shall be presented in the following form:

- 1. Definition of the problem
- 2. Literature survey
- 3. Analysis of results and Discussion
- 4. Conclusions
- 5. References

The project report shall be submitted in the prescribed standard format (04 copies) to the HOD on or before the last working day of the semester after the certification of the concerned guide and HOD.

Question paper pattern:

Evaluation of CIE marks:60% marks will be evaluated by concerned guide on the basis of the performance of the student during project work remaining 40% marks will be evaluated by expert committee constituted by HOD containing minimum two experts of the department in the relevant field. Students have to deliver seminar before expert committee.

Evaluation of SEE marks: Viva-voce examination will be conducted in the presence of internal and external examiners appointed by HOD.

Course outcomes:

On completion of the course, the student will have the ability to:

CO#	Course Outcome (CO)	Blooms Level
CO1	Demonstrate the technical knowledge of the selected project topic.	C5
CO2	Execute the project work independently in small group of 4-5 members demonstrating strong working knowledge of ethics & professional responsibility.	C6
CO3	Compile and analyze the project data using modern tools and produce a good quality project work.	C5
CO4	Present the project outcomes effectively using good presentation skills.	C4
CO5	Prepare a well-organized and compiled project thesis.	C4

INTERNSHIP				
Subject code	18CVIN86	Credit: 02		
Hours/Week		SEE: 50 Marks		
Total hours:	CIE: 50 Marks	SEE: 3 Hours		

Course objectives:

This course will enable students to get the field exposure and experience

Note: Internship:

- 1. This shall be carried out by students in industry set-up related to the construction/ materials testing laboratories/research organizations/project management consulting firms/QS and QA organizations/ planning and design offices/Professional organizations like ACCE/ICI/INSTRUCT/RMCMA/QCI, PMI, CIDC etc. and other avenues related to the civil engineering domain in consultation and approval of internship guide/HOD /internship committees of the institutions.
- 2. The professional certification programs like ACCE(I)- SMP, ICI-BMTPC certifications, NSTRUCT certifications, CIDC certifications, RMC-QCI's RMCPCS Certification Programs, RMCMA-NRMCA'S Concrete Technologist India (CTI) programs and such similar programs by professional bodies with adequate industry exposures at sites/RMC plants can be considered as Internship /Professional Practice with due approvals from the guide/HOD /internship committees of the institutions
- 3. The industry/organization should issue certificates of internship offer and its completion. The offer letter should clearly have the nature of work to be done by the student and the supervisor's name and duration of internship.
- 4. The Duration of the Internship shall be 8 Weeks. Student shall make a midterm and final presentation of the activities undertaken during the first 4 weeks (In last week of VII sem or at the beginning of VIII sem) and at the end of 8th week of internship (preferably latest by last week of VIII sem) respectively, to a panel comprising internship guide, a senior faculty from the department and head of the department. Each student should submit the internship report at the end of semester with internship certificate.
- 5. Viva-Voce examination shall be conducted by a panel of examiners consisting of internship supervisor from industry or industry professional approved by Institute or in the case of non-availability of industry person a internal expert and internship guide from the institute.
- 6. The College shall facilitate and monitor the student internship program.
- 7. The internship should be completed during vacation after VI and VII and (If not completed during the vacation of VI and VII semesters, it shall be carried out during the vacation of VII and VIII semesters).