CURRICULUM

FOR THE YEAR 2019-23

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

III and IV SEMESTER B.E.

POOJYA DODDAPPA APPA COLLEGE OF ENGINEERING (Autonomous Engineering college Affiliated to VTU Belagavi) KALABURAGI-585102

About the institution

The Hyderabad Karnataka Education (HKE) society founded by Late Shri Mahadevappa Rampure, a great visionary and educationist. The HKE Society runs 46 educational institutions. Poojya Doddappa Appa College of Engineering, Gulbarga is the first institution established by the society in1958.The college is celebrating its golden jubilee year, setting new standards in the field of education and achieving greater heights.

About the department

Department of Electronics & Communication Engineering was established in 1967 & is the pride of Karnataka. With an initial intake of 30 students the department has grown steadily and the present intake is 120 students for the UG programme. The graduates from this Department are playing a vital role in the IT revolution and are instrumental in placing Karnataka on the Global IT Landscape. These professionals have found placement in major industries and multinational corporations. Many of them are successful entrepreneurs.

The department also offers Post Graduate programs in 'Communication Systems' with an intake of 18. Active engagement of faculty in research has led to recognition of department as a Research center by the VTU.

The faculty strength of the department is 28, including 4 Professors, 4 Associate Professors, 20 Assistant Professors. The faculty always strives for imparting better knowledge to the students and works as a team in all departmental activities.

Students graduated from the department are well placed in India and abroad. Quite a few of them have pursued higher studies both in India and abroad. Some of them have qualified for Indian Engineering and Defense Services. Students of the department have bagged university ranks including the First rank on several occasions.

The department has state-of-the-art laboratories in the areas of Communication, DSP, Microwave, Microcontroller, Embedded system, VLSI design etc.

Vision of the Institute

To be an institute of excellence in technical education and research to serve the needs of industry and society at local and global levels.

Mission of the Institute

- 1. To provide a high-quality educational experience for students with values and ethics that enables them to become leaders in their chosen profession.
- 2. To explore, create and develop innovations in engineering and science through research and developmental activities.
- 3. To provide beneficial service to national and multinational industries and communities through educational, technical and professional activities.

Department of Electronics and Communication Engineering

Vision of the Department

To be a premier department in Electronics and Communication Engineering field by providing quality education through teaching, learning, research and innovations to serve the industry and society.

Mission of the Department

M1 Develop an environment for better teaching and learning in collaboration with industry, premier institutes and alumni.

M2 Produce competent engineers to meet the requirements of the industry and the society.

M3 Encourage students to pursue higher education, research work and to take up administrative responsibilities through leadership.

Program Educational Objectives

1. The graduates possess emergent technical skills to perform design and developmental activities in various areas of Electronics and Communication Engineering like Signal Processing, VLSI, Embedded Systems, Communication Systems and other engineering specializations.

2. The graduates indulge into entrepreneurial, higher learning/research activities to be in pace with the continuous developing environment.

3. The graduates exhibit effective communication skills, leadership and team work qualities in industry, research and development organizations maintaining ethical standards.

Program Outcomes:

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability toengage in independent and life-long learning in the broadest context of technological change.

PSO-Program Specific Outcomes:

- Apply the concepts of Electronics & Communication Engineering in various areas like Signal processing, VLSI, Embedded systems, Communication Systems, Digital & Analog Devices and other engineering specializations.
- 2. Solve complex Electronics and Communication Engineering problems with modern hardware and software tools, along with analytical skills to arrive at cost effective and appropriate solutions.
- 3. Possess social and environmental awareness along with ethical responsibility to adapt with the emerging technologies in Electronics and Communication Engineering for sustainable real-world applications to have a successful career.

Scheme of Teaching and Examination of III Semester B.E in Electronics and Communication Engineering

	Course		Hours	/ Week			Maximu	n Marks		
	Course	Lecture Tutorial Practical Duration			CIE SEE Total Marks Credits					
Code										
19MA31C	Mathematics-III	02	02		04	50	50	100	3	
19EC32	Field Theory	04			04	50	50	100	4	
19EC33	Electronic Devices and Circuits	04			04	50	50	100	4	
19EC34	Network Analysis	04			04	50	50	100	4	
19EC35	Digital Electronics	03			03	50	50	100	3	
19HU36	Constitution of India and Professional Ethics	02			02	50	50	100		
19ECL31	Electronics Devices and Circuits Lab			02	02	50	50	100	1	
19ECL32	Network Analysis Lab			02	02	50	50	100	1	
19ECL33	Digital Electronics Lab			02	02	50	50	100	1	
		21	02	06	29	500	500	1000	21	

Scheme of Teaching and Examination of IV Semester B.E in Electronics and Communication Engineering

	Course		Hours	/ Week			Maximu	m Mark	S
	Course	Lecture	Tutorial	Practical	Duration	CIE	SEE Tot	al Mark	s Credits
Code									
19EC41	Transmission line and waveguide	03			03	50	50	100	3
19EC42	Signals and Systems	04			04	50	50	100	4
19EC43	Analog Electronics	04			04	50	50	100	4
19EC44	Microprocessors	04			04	50	50	100	4
19EC45	Analog Communication	04			04	50	50	100	4
19CV46	Environment Studies	02			02	50	50	100	
19EC47	Kannada	02			02	50	50	100	1
19ECL41	Analog Electronics Lab			02	02	50	50	100	1
19ECL42	Analog Communication Lab			02	02	50	50	100	1
19ECL43	Microprocessors Lab			02	02	50	50	100	1
		21		06	27	450	450	900	23

	FIELD THEORY	
Subject Code	19EC32	CIE: 50
Number of Lecture Hours/Week	4 (Theory)	SEE: 50
Total Number of Lecture Hours	52	SEE Hours: 03
	CREDITS- 4	
Mo	dules-1	Teaching Hours
coordinate systems, vector con products. Cylindrical and spher transformations. Coulomb's law electric field in Experimental coulombs law, e due to continuous volume c Electric flux density, Gauss 1 density, Gauss law and its appli	lectric field intensity, electric field harge, line charge, sheet charge. law and Divergence: electric flux	11 Hours
line integral, potential difference point charge, The potential conservative property, potent density in electric field. Conductors, dielectric and ca Current and current density, conductors, conductor prope	ng point charge in an electric field, ce and potential, potential field of a field of a system of charges- tial gradient, the dipole, energy pacitance: , continuity of current, Metallic erties and boundary conditions, ce examples. Capacitance of a two-	10 Hours
	dules-3	
Poisson's and Laplace's equate Poisson's and Laplace's equate of Laplace's equation, exance equations Magnetic Fields: Steady Magnetic fields: Biot sa Curl. Stokes theorem, magnete forces, material and inductar potentials, magnetic force betw force and torque on a clo conditions, magnetic circuit, in Mo	10 Hours	
displacement current, Maxwe integral form, the retarded pote Uniform plane wave :	Exwell's equations : Faraday's law, Il's equations in point form and ntials.	11 Hours

		power considerations, propagation in good	
conductors-ski	n effect,	wave polarisation.	
		Modules-5	
uniform plane wave reflection in general dire	waves and from nections, p	aries & in dispersive media: Reflection of at normal incidence, standing wave ratio, nultiple interfaces, plane wave propagation plane wave reflection at oblique incidence	10 Hours
		pagation in dispersive media.	
Course object	ives		
1. To a	appreciat	te the theory of vector analysis	
		nd the concepts of electrostatics, electrical po their applications	tential, energy
	•	he concepts of magneto statics, magnetic flu	x density scalar and
vec 4. To e	tor poter	ntial and its applications Biot-Savart's Law, Ampere's Law, Faraday's	•
Question pape		n:	
• The question	paper wi	Il have ten questions.	
• Each full que	stion cor	sists of 20marks.	
• There will be	2 full qu	estions (with a maximum of four sub question	ons) from each module.
• Each full qu	estion w	vill have sub questions covering all the to	pics under a module. The
		swer 5 full questions, selecting one full ques	
Text books:		· · · · ·	
1. Wil	liam H F	layt Jr and John A Buck., Engineering electro	omagnetic, TMH 7 th ed.
	Jordon	& K G . Balmain., electromagnetic waves a	6
Reference Boo			
1. Kra	us J D ai	nd Carver K R., electromagnetic., (TMH)	
2. J A	Edminis	ter., electromagnetic, TMH 2 nd ed.	
		An Introduction Course in electromagnetic.	
4. P.N	J. O Sad	liku, "Elements of electromagnetic" 4 th ed. O	xford University press.
E books and o	nline co	urse materials:	
Course outcom			
On completion	n of the o	course, the student will have the ability to:	
Course Code	CO #	Course Outcome (CO)	
19EC32	CO1	Compute electric field intensity & potenti Gauss's law.	al using Coulomb's law &
	CO2	Analysis of EM field using boundary condi	tions.
	CO3	Analysis of steady magnetic fields.	
	CO4	Analysis of time varying fields using Max propagation in different media.	well's equations and wave
	CO5	Analysis of wave reflection in different me	dia.
<u> </u>	1	1	

19EC32: Field Theory

	-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Compute electric field intensity & potential using Coulomb's law & Gauss's law.	3	3	2					1		1		1	3	2	2
CO2	Analyze EM field using boundary conditions	3	3	2					1		1		1	3	2	2
CO3	Analyze steady magnetic fields.	3	3	2					1		1		1	3	2	2
CO4	Analyze time varying fields using Maxwell's equations and wave propagation in different media.		3	2					1		1		1	3	2	2
CO5	Analyze wave reflection in different media.	3	3	2					1		1		1	3	2	2
	Average	3	3	2					1		1		1	3	2	2

EL	ECTRONIC DEVICES AND CIRC	CUITS					
Subject Code	19EC33	CIE: 50					
Number of Lecture Hours/Week	4 (Theory)	SEE: 50					
Total Number of Lecture Hours	SEE Hours: 03						
	CREDITS-4						
	Module-1	Teaching Hours					
approximations, series die parallel and series, parallel Diodes applications : A rectification, full wave rec diodes as regulators and vo	AND / OR gates, half wave ctification, clippers, clampers, zener oltage multiplier circuits.	11 Hours					
	Module-2						
construction, input output transistor amplifying actic and common collector con	nsistor: Introduction, transistor at characteristics, operating point, ons, common emitter configurations figurations, ting point, fixed bias circuit, emitter	11 Hours					
stabilized bias circuits and	voltage divider bias.						
equivalent model of small	JT transistor modeling and hybrid l signal amplifier configuration and it impedance and output impedance.						
	Module-3 Construction and characteristics of						
JFET's, transfer character enhancement type MOSFE FET biasing: fixed configurations, voltage div Small signal analysis: s	istics, depletion type of MOSFET, ET, bias configurations, self bias	10 Hours					
amplifier design.							
	Module-4						
Feedback and Oscillator circuits: Feedback concepts, feedback connection types, practical feedback circuits, feedback amplifier, phase and frequency considerations,10 HoursOscillators: operation, phase shift oscillator, wien bridge oscillator, tuned oscillator circuits, crystal oscillator.10 Hours							
	Module-5 R, SCR characteristics and ratings,						
basic controlled rectifier,	DIAC, TRIAC, UJT, programmable chopper, operation of single phase	10 Hours					
Course objectives: After s 1. Design of diode cir 2. Biasing of BJTs an	d FETs pplifiers using BJT and FET cillators.	able to:					

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 20marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module, there will be five modules.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text books:

- 1. Robert L Boylestad, "Electronic Devices and Circuit Theory", PHI, 6th edition 1999.
- 2. MilimanHalkias, "Electronic Devices and circuits", TMH.

Reference Books:

- 1. Adel .S. Sedra, Kenneth C. Smith, "Micro Electronic Circuits", 6th Edition, Oxford University Press, 2010.
- 2. David A.Bell, "Electronic Devices and Circuits", Oxford Higher Education Press, 5thediton, 2010

E books and online course materials: NPTEL

Course Outcome:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
19EC33	CO1	Design and analyze diode circuits.
	CO2	Analyze transistor biasing circuits and amplifiers using small signal model.
	CO3	Analyze FET biasing circuits and amplifiers using small signal model.
	CO4	Analyze feedback amplifiers and design oscillators.
	CO5	Analyze power devices and their applications.

19EC33: Electronic devices and circuits

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Design and analyze diode circuits.	3	3	1					1		1		1	3	2	2
CO2	Analyze transistor biasing circuits andampliifiers using small signal model.	3	3	2					1		1		1	3	2	2
CO3	Analyze FET biasing circuits andampliifiers using small signal model.	3	3	2					1		1		1	3	2	2
CO4	Analyze feedback amplifiers and design oscillators.	3	3	3					1		1		1	3	2	2
CO5	Analyze power devices and their applications	3	3	2				2	1		1		1	3	2	2
	Average	3	3	2				2	1		1		1	3	2	2

	NETWORK ANALYSIS	
Subject Code	19EC34	CIE: 50
Number of Lecture Hours/Week	4 Hours (Theory)	SEE: 50
Total Number of Lecture Hours	52	SEE Hours: 03
	CREDITS –4	
Ν	Iodule-1	Teaching Hours
controlled and uncontrolle KCL and KVL analysis, no and super mesh analysis. Graph Theory: Topologica	al voltage and current sources, d sources, source transformation, odal and mesh analysis, super node l description, topological structures, ncidence matrix, cut set and tie set	11 Hours
Transient Analysis : Capace equivalent circuits, transien initial and final conditions, a general discussion, concepts and admittance, complete solutions.	Iodule-2 citive and inductive transients and its in RL, RC and RLC circuits, time constants. steady state analysis is of phasor and vector, impedances the sinusoidal steady state circuit Iodule-3	11 Hours
	enins and Norton's, Superposition,	10 Hours
Reciprocity, Compensation	, Substitution, Maximum power ellegen's theorems, problems with	10 110 110
Ν	Iodule-4	
and transfer functions for on poles and zeros, stability and		10 Hours
	1odule-5	
- -	Y, ABCD, hybrid parameters, their rs, relationship between parameters, networks.	10 Hours
electrical circuits. 4. To describe and analyz 5. To describe Z,Y,A,B,C Question paper pattern: • The question paper will hav • Each full question consists • There will be 2 full question questions) from each modu • Each full question will hav	analysis. e various network theorems in solv e Two-Port networks. C,D and hybrid parameters. ve ten questions.	S

selecting one full question from each module.

Text books:

- 1. M. E. Van Valkanberg, "Network Analysis", PHI
- 2. Hayt. W. H. & J. E. Kemmerly, "Engineering Circuit Analysis", TMH

Reference Books:

- 1. William D Stanley, "Network Analysis with Applications", Pearson Education
- 2. Roy Choudhary D, "Network and systems", New age Publications

E books and online course materials: NPTEL

Course outcomes:On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
19EC34	CO1	Apply circuit laws to reduce circuit complexity and to arrive at feasible solutions.
	CO2	Analyze RL, RC, RLC circuits under transient and sinusoidal steady state conditions.
	CO3	Apply Network theorems to analyze AC and DC circuits.
	CO4	Compute transfer functions of circuits for analyzing stability.
	CO5	Compute Two-Port network parameters and their relationship.

19EC34: Network Analysis

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Apply circuit laws to reduce circuit complexity and to arrive at feasible solutions.	3	3	2					1		1		1	3	3	2
CO2	Analyze RL, RC, RLC circuits under transient and sinusoidal steady state conditions.	3	3	2					1		1		1	3	3	2
CO3	Apply Network theorems to analyze AC and DC circuits.	3	3	2					1		1		1	3	3	2
CO4	Compute transfer functions of circuits for analyzing stability.	3	3	2					1		1		1	3	3	2
CO5	Compute Two-Port network parameters and their relationship.	3	3	2					1		1		1	3	3	2
	Average	3	3	2					1		1		1	3	3	2

	DIGITAL ELECTRONICS							
Subject Code	19EC35	CIE: 50						
Number of Lecture Hours/Week	4 (Theory)	SEE: 50						
Total Number of Lecture Hours	57							
	CREDITS- 4							
	Module-1	Teaching Hours						
postulates and laws, mi maxterm, canonical for technique, Quine-McCh Logic Gates: Basic exclusive–NOR, imple	nd Minimization techniques: Boolean nimization of Boolean expressions, minterm orms, Karnaugh map minimization, VEM uskey method of minimization. gates, universal gates, exclusive–OR and mentations of logic functions using gates, ntations,multi level gate implementations, nentations,	11 Hours						
	Module-2							
subtractor, parallel bina adder, BCD adder, bina demultiplexer, decode	f adder, full Adder, half subtractor, full ary adder and subtractor, carry look ahead ry multiplier, binary divider, multiplexer and r and encoder, parity checker, parity ters, magnitude comparators. Module-3	10 Hours						
	Module-5							
equation, realization excitation table, asynchronous/ripple co up/down counters, desi	types of flip-flops, characteristic table and of one flip flop using other flip flops, edge triggering, level triggering, unter, synchronous counters, synchronous gn of synchronous counters: state table, state tion, state assignment, sequence generators. Module-4	11 Hours						
Synchronous Sequenti								
analysis of synchronous Asynchronous Sequen Design of fundamental	1	10 Hours						
Momony devices		10 Houng						
memories, RAM or waveforms for read a memory expansion Pro logic array (PLA), programmable gate	s, universal shift registers, classification of ganization, ROM organization, timing nd write operation, address decoding and grammable Logic Devices: Programmable programmable array logic (PAL), field arrays (FPGA), implementation of cuits using ROM, PLA, PAL	10 Hours						

Course objectives: This course will enable students to:

- To introduce basic postulates of Boolean algebra and shows the Correlation between Boolean expressions
- To introduce the methods for simplifying Boolean expressions
- To outline the formal procedures for the analysis and design of Combinational circuits and sequential circuits
- To introduce the concept of memories and programmable logic devices.
- To illustrate the concept of synchronous and asynchronous sequential circuits.

Question paper pattern:

• The question paper will have ten questions.

- Each full question consists of 20marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module, there will be five modules.

• Each full question will have sub questions covering all the topics under a module. The

students will have to answer 5 full questions, selecting one full question from each module. **Text books:**

- M. Morris Mano, "Digital Design", 4th Edition, Prentice Hall of India Pvt. Ltd., 2008
- 2. John. M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.

Reference Books:

- 1. Morris and Miller." Designing with TTL integrated circuits", McGrawHill
- 2. Fletcher, "An Engineering approach to digital Design", PHI
- 3. Kohavi, "Switching and Finite Automata Theory", TMH

E books and online course materials: NPTEL

Course outcomes:

On comple	tion of the c	course, the student will have the ability to:
Course	CO #	Course Outcome (CO)
Code		
19EC35	CO1	Apply different methods for simplification of Boolean expressions and realize using gates.
	CO2	Design and realize Combinational circuits.
	CO3	Design and realize sequential circuits.
	CO4	Analyze synchronous and asynchronous sequential circuits.
	CO5	Analyze memory devices and memory organization.

19EC35: Digital Electronics

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Apply different methods for simplification of Boolean expressions and realize using gates.	3	2	3					1		1		1	3	3	2
CO2	Design and realize Combinational circuits.	3	3	3					1		1		1	3	3	2
CO3	Design and realize sequential circuits.	3	3	3					1		1		1	3	3	2
CO4	Analyze synchronous and asynchronous sequential circuits.	3	3	3					1		1		1	3	3	2
CO5	Analyze memory devices and memory organization.	1	1	2					1		1		1	3	3	2
	Average	2.6	2.4	2.8					1		1		1	3	3	2

Subject Code		10ECI 21	CIE: 50							
Subject Code		19ECL31	CIE: 50							
Number of Lecture Hours/Week		02 Hours(Practical)	SEE: 50							
Fotal Number of Lecture Hours			SEE Hours: 03							
	(CREDITS –1								
bypassed emitter resis 3. Darlington amplifier 4. Differential amplifier 5. Series and Parallel cli 6. Series and Parallel cli 7. Half-wave rectifier w 8. Full-wave rectifier w 9. Oscillators. 10. Design of a single star response. 11.Zener voltage regulator 12. Characteristics of SCR, 13. Power electronics circu	stor. using BJ' pping circ amping circ ith/withou ith/withou ge voltage UJT. its tion: ts are to b	cuits rcuits at capacitor filter. at capacitor filter. e series feedback amplifier and e included for practical exami	l draw frequency							
• Strictly follow the instruct	ctions as p	rinted on the cover page of an	swer							
 script for breakup of mar Change of experiment is rks. 		nly once and will be evaluated	for 85% of the total ma							
Course outcomes: On completion of the course, tl	ne studen	t will have the ability to:								
Course Code	CO #	Course Outcome (CO)								
9ECL31	CO1	Design of transistor amplifie	er circuits.							
	CO2	Analyze and design wave sh	aping circuits.							
	CO3	Design of DC power source	s.							
Design of DC power sources.										

Design of power circuits.

CO5

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Design of transistor amplifier circuits	3	3	1			1	1	2	3	2		1	3	2	2
CO2	Analyze and design wave shaping circuits	3	3	1			1	1	2	3	2		1	3	2	2
CO3	Design of DC power sources	3	3	2			1	1	2	3	2		1	3	2	2
CO4	Design of oscillators	3	3	2			1	1	2	3	2		1	3	2	2
CO5	Design of power circuits	3	3	2			1	1	2	3	2		1	3	2	2
	Average	3	3	1.6			1	1	2	3	2		1	3	2	2

Ň	ETWORK AN	ALYSIS LABORATORY								
Subject Coc	le	19ECL32	CIE: 50							
Number of Lecture Hours/Wee		02 Hours (Practical)	SEE: 50							
Total Number of Lec	ture Hours	rs SEE								
	CI	REDITS –1								
network 6. Filters i) low pass ii) high pass Conduct of Practical Exar • All laboratory exper • Students are allowed • Strictly follow the in script for breakup of	rems: d Norton ion oower theorem d tuned circuits onance onance ysis nalysis of impedance an nination: iments are to be I to pick one exp istructions as pri marks.	Id admittance using two port included for practical examinati eriment from the lot. nted on the cover page of answe y once and will be evaluated for	r							
Course outcomes: On completion of the cour	se, the student	will have the ability to:								
Course Code	CO #	Course Outcome (CO)								
19ECL32	CO1	Verification of KCL and KVI	J.							
	CO2	Verification of network theore	ems.							
	CO3	Design of resonance circuits.								
	CO4	Analyze transient and steady s	state response.							
	CO5	Implementing different analog	g filters.							

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Verification of KCL and KVL	3	3	1			1	1	2	3	2		1	3	2	2
CO2	Verification of network theorems	3	3	1			1	1	2	3	2		1	3	2	2
CO3	Design of resonance circuits	3	3	1			1	1	2	3	2		1	3	2	2
CO4	Analyze transient and steady state response	3	3	2			1	1	2	3	2		1	3	2	2
CO5	Implementing different analog filters	3	3	1			1	1	2	3	2		1	3	2	2
	Average	3	3	1.2			1	1	2	3	2		1	3	2	2

19ECL32: Network Analysis lab

		DIGITAL F	ELECTRONICS LAB							
	Subject Coc	le	19ECL33	CIE: 50						
	Number of Lecture Hours/Wee		02Hours (Practical)	SEE: 50						
	Total Number of Lec	ture Hours		SEE Hours: 03						
		С	REDITS –1							
2. 3. 4. 5. 6. 7. 8. 9. 10	Design and impleme Design and impleme 7483 Design and impleme Magnitude Compara Design and impleme Design and impleme realization Boolean Design and impleme Boolean functions u Design and realization Design and implement	entation of code entation of 4 bi- entation of 2 bi- ator using IC 74 entation of 16 bi- nentation of Mu functions using entation of end sing MSI Encod on of 2-bit, 3-bi- entation of syncl SISO, SIPO, PIS	t odd/even parity checker genera altiplexer and De-multiplexer u MSI MUX/DEMUX coder and decoder using logic lers/Decoder. t and 4-bit ripple counters. hronous counters. O and PIPO shift registers using	BCD adder using IC logic gates and 8 Bit tor using IC74180. sing logic gates and gates and realization						
• • •	Students are allowed Strictly follow the in script for breakup of 5. Change of exper marks. e outcomes:	iments are to be I to pick one exp structions as pr marks. iment is allowed	e included for practical examinati periment from the lot. inted on the cover page of answe d only once and will be evaluated	r						
	mpletion of the cour	CO #	will have the ability to: Course Outcome (CO)							
19EC	L33	CO1	Simplification of Boolean expression realization using gates.	pressions and						
		CO2	Design and realize combinational circuits using MSI ICs.							
		СОЗ	Design and realize asynchrone	ous counters.						
		CO4	Design and realize synchrono	us counters.						
	CO5 Design and realize sequential circuits using shift registers.									

19ECL33: Digital Electronics Lab

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Simplification of Boolean expressions and realization using gates.	2	2	1			1	1	2	3	2		1	3	2	2
CO2	Design and realize combinational circuits using MSI ICs	3	3	1			1	1	2	3	2		1	3	2	2
CO3	Design and realize asynchronous counters.	3	3	1			1	1	2	3	2		1	3	2	2
CO4	Design and realize synchronous counters	3	3	1			1	1	2	3	2		1	3	2	2
CO5	Design and realize sequential circuits using shift registers.	3	3	1			1	1	2	3	2		1	3	2	2
	Average	2.8	2.8	1			1	1	2	3	2		1	3	2	2

	IV SEMESTER		
TRANSM	ISSION LINES AND W	AVE GUIDES	-
Subject Code	19EC41	CIE	50
Number ofLecture Hours/Week	03 Hours	SEE	50
Total Number of Lecture Hours	42	SEE Hours	03
 Course objectives: This course will e To study the transmission line p To study fundamentals concept To expose the learners to wave 	parameters. s of transmission lines at		Teaching Hours
	Module -1		
Transmission line parameters: Line parallel line conductors, inductance of two parallel line conductors, capacita sections, The transmission line –gene equations, the infinite line, Waveler distortion.	the coaxial line, skin effe nce of coaxial line. A li eral solution, Physical si	ect, capacitance of ne of cascaded T ignificance of the	08 Hours
	Module -2		
Low and high frequency Transmissi on a line not terminated in Zo, Ref lines, Reflection factor & reflection lo zero dissipation, Voltages & currents o nodes, standing-wave ratio, Input Im impedance of open & short circuited dissipation, OC and SC impedances	lection coefficient, Open ss, Insertion loss, Consta n the Dissipation less line	& short-circuited ants for the line of e, Standing waves, on less line, Input	09 Hours
	Module -3		
Impedance matching in high fr impedance matching, the half-wave transformation, Single & double stub & its applications.	line, the exponential li	ine for impedance	08 Hours
	Module -4		
Guided waves between parallel planes equations, Types of propagation: TM, T between parallel planes, Transmission Transmission of TEM waves between para	E &TEM waves, Transmis n of TE waves between allel planes.	sion of TM Waves	08 Hours
	Module -5	. 1	
WAVE GUIDES : Application of Maguide, The TEm,n and TMm,n wave guides, The TEM wave in the coaxial l	in the rectangular guide,	•	09 Hours

Question paper pattern:

The question paper will have ten questions.

Each full question consists of 20marks.

There will be 2 full questions (with a maximum of four sub questions) from each module.

Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from

each module.

Reference Books:

1. J.D. Ryder, Network lines & fields, PHI

2. Jordan. E.C and Balmain., Electromagnetic waves and radiating systems, PHI.

3. Sanjeev Gupta., Microwave Engineering.

Course outcome On completion o		e, the student will have the ability to:
Course Code:	CO #	Course Outcome (CO)
19EC41	CO1	Determine the Line parameters.
	Determine the propagation characteristics of transmission lines under different conditions.	
	CO3	Analyze different impedance matching methods.
	CO4	Analyze propagation characteristics of electromagnetic waves in parallel planes.
	CO5	Analyze the behavior of different modes of propagation in various wave guides.

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Determine the Line parameters.	3	3	2	1				1		1		1	3	3	2
CO2	Determine the propagation characteristics of transmission lines under different conditions.	3	3	2	2				1		1		1	3	3	2
CO3	Analyze different impedance matching methods.	3	3	3	2				1		1		1	3	3	2
CO4	Analyze propagation characteristics of electromagnetic waves in parallel planes	3	3	2	2				1		1		1	3	3	2
CO5	Analyze the behavior of different modes of propagation in various wave guides.	3	3	3	2				1		1		1	3	3	3
		3	3	2.4	1.8				1		1		1	3	3	2.8

19EC41: Transmission lines and waveguides

	SIGNALS AND SYSTEMS	
Subject Code	19EC42	CIE: 50
Number of Lecture Hours/Week	4 Hours (Theory)	SEE: 50
Total Number of Lecture Hours	52	SEE Hours: 03
	CREDITS- 4	
	Module-1	Teaching Hours
Continuous-Time and Discre – even and odd, periodic and deterministic and random elementary signals, singularity system properties,	10 Hours	
	Module-2	
Linear Time-Invariant Sys convolution sum, continuous- properties of LTI systems, cau and difference equations, block	11 Hours	
	Module-3	
Analogy between vectors and s of mutually orthogonal fr exponential Fourier series, pro time Fourier transform, Fourier of Fourier transforms.		
	Module-4	
Fourier representation of Di recovery of signal from its sam properties of DTFS, discrete-ti of DTFT, applications of o discrete-Time Fourier transform	11 Hours	
	Module-5	
Z-Transform: The Z-Transfor properties, inverse Z-transfor transform from the pole-zero and characterization of LTI sy transform.	10 Hours	
To learn Linear Time InTo understand Fourier I	f signals and systems, sampling theorem. nvariant systems and properties of LTI systeme representation of Continuous Time signals. representation of Discrete Time signals.	ems.
Question paper pattern: • The question paper will have	ten questions.	

- Each full question consists of 20marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module, there will be five modules.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text books:

- 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson Education, 2007.
- 2. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005

Reference Books:

- 1. Simon Haykin and Barry Van Veen "Signals and Systems", John Wiley & Sons, 2001
- 2. Miichael J Roberts, Govind Sharma, "Fundamentals of Signals and Systems", 2nd Edition, McGrawHill 2010

E books and online course	materials: NPTEL
---------------------------	------------------

Course outcomes:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
19EC42	CO1	Analyze different signals and operations on signals.
	CO2	Analyze LTI systems and determine properties of LTI systems.
	CO3	Analyze Continuous-Time signals in Fourier Domain.
	CO4	Analyze Discrete-Time signals in Fourier domain.
	CO5	Analyze Discrete-Time signals using Z-Transform.

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Analyze different signals and operations on signals	3	3		2				1		1		1	3	3	2
CO2	Analyze LTI systems and determine properties of LTI systems	3	3		2				1		1		1	3	3	2
CO3	Analyze Continuous-Time signals in Fourier Domain.	3	3		2	2			1		1		1	3	3	2
CO4	Analyze Discrete-Time signals in Fourier domain.	3	3		2	2			1		1		1	3	3	2
CO5	Analyze Discrete-Time signals using Z-Transform.	3	3		2	2			1		1		1	3	3	2
		3	3		2	2			1		1		1	3	3	2

19EC42: Signals and Systems

	ANALOG ELECTRONICS				
Subject Code	19EC43	CIE: 50			
Number of Lecture Hours/Week	4 (Theory)				
Total Number of Lecture Hours	52	SEE Hours: 03			
	CREDITS- 4				
	Module-1	Teaching Hours			
Op-amp Basics: Analysis of differential mode gains, trans impedances, ideal op-amp of amplifier, I/P ,O/P stages and le Linear operational amplifier differential bridge amplifiers, su to V converters, op–amp feedb amplifiers, analog multipliers, detectors, precision rectifiers, in	11 Hours				
	Module-2				
Non linear operational amplif multivibrators, comparators, Sc Waveform generation: Signa generator, phase shift oscillator Timers: Basic timer circuit, 5 multivibrators, timer others app	10 Hours				
Data converters: Performance binary type, ladder R–2R converters: Performance pramp, continuous ramp, flash to converter.	10 Hours				
	Module-4				
PLL: Basic principles, phase of monolithic phase locked loop PLL applications: Freque translation, AM detection, FM of	11 Hours				
	Module-5				
DC voltage regulators: An regulators using op-amp, some variable, current boosting Switching regulators : Basic co	10 Hours				
Course objectives: After studying this course, stude 1. Design op-amp circuits 2. Understand generation of 3. Understand working and 4. Working of regulators and its	various waveforms operation of data converters				

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 20marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module, there will be five modules.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text books:

- 1. D Roy Choudhary, "Linear Integrated Circuits", New Age Publications 5th edition 2018.
- 2. Ramakant A Gayakwad, "Op-Amps and Linear Integrated Circuits", PHI, 4th edition, 2014

Reference Books:

1. David A.Bell, "Operational Amplifiers and Linear ICs", PHI, 2nd edition, 2009.

E books and online course materials: I	NPTEL
--	-------

Course Objectives:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
19EC43	CO1	Analyze Op-amp circuits and their applications.
	CO2	Design of waveform generators using Op-amp and timers.
	CO3	Determine performance parameters of data converters.
	CO4	Analyze PLL operation and its applications.
	CO5	Design of voltage regulators.

19EC43: Analog Electronics

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Analyze Op-amp circuits and their applications	3	3	3	2				1		1		1	3	2	2
CO2	Design of waveform generators using Op-amp and timers	3	3	3	2				1		1		1	3	2	2
CO3	Determine performance parameters of data converters	3	3	2	2				1		1		1	3	2	2
CO4	Analyze PLL operation and its applications	3	3	2	2				1		1		1	3	2	2
CO5	Design of voltage regulators	3	3	2	2				1		1		1	3	2	2
	Average	3	3	2.4	2				1		1		1	3	2	2

MICROPROCESSORS AND INTERFACES

MICKU	I ROCESSORS AND INTERFACES	
Subject Code	19EC44	CIE: 50
Number of Lecture Hours/Week	4 Hours (Theory)	SEE: 50
Total Number of Lecture Hours	52	SEE Hours: 03
	CREDITS- 4	
Ν	Iodule-1	Teaching Hours
INTRODUCTION TO MICR	O PROCESSORS.	10 Hours
Historical background, general operation, Harvard vs Von-N machines, pipelining. Intel configuration, memory segme generation and examples.	10 110013	
Ν	Iodule-2	
INSTRUCTION SET OF 808 Addressing Modes of 808 assembler instruction format, logical, shift and rotate instr control and flag manipulation instructions with example progr	11 Hours	
Ν	Iodule-3	
DIRECTIVES AND OPERAT Introduction to assembler direct examples involving assembler keyboard, display (01, 08, 06, 0 MODULAR PROGRAMMIN and procedures (near and far), p 8086 INTERRUPTS: 8086 Int	11 Hours	
8086 BASED MULTIPROCE Coprocessor configurations, 80 processor architecture, instructi SYSTEM BUS STRUCTURE mode, maximum mode. Me examples.	10 Hours	
Ν	Iodule-5	
BASIC I/O INTERFACES A Study of 8255 PPI, 8253 tim interfacing microprocessor to b LED. a brief comparative study and Pentium microprocessors.	10 Hours	
and memory seg	86 Microprocessor architecture, Pin cor mentation. ruction set of 8086.	figuration

- To introduce directives, DOS functions and Modular programming.
- To introduce the Multi-processing using 8086.

• To introduce interfacing of 8255 PPI, 8253 Timer and 8251 USART to 8086.

Question paper pattern:

• The question paper will have ten questions.

• Each full question consists of 20marks.

• There will be 2 full questions (with a maximum of four subquestions) from each module, there will be five modules.

• Each full question will have sub questions covering all the topics under a module. The

students will have to answer 5 full questions selecting one full question from each module. **Text books:**

1. Douglas V Hall, "MICROPROCESSOR AND INTERFACING- PROGRAMMING & HARDWARE", 2ndedition, TMH, 2006.

Reference Books:

- 1. Y.C. Liu and G. A. Gibson,"MICROCOMPUTER SYSTEMS-THE 8086 / 8088 FAMILY", 2nd edition, PHI-2003
- 2. Barry B. Brey, "THE INTEL MICROPROCESSOR, ARCHITECTURE, PROGRAMMING AND INTERFACING", 6TH EDITION, Pearson Education / PHI, 2003

Course outcomes:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
19EC44	CO1	Study the architecture and basic concepts of 8086.
	CO2	Write assembly language programs.
	CO3	Use DOS functions and Directives in ALP.
	CO4	Study and interface coprocessor and memory devices.
	CO5	Interface different peripheral devices to 8086.

19EC44:	Microproc	essors and	Interfaces
----------------	-----------	------------	------------

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Study the architecture and basic concepts of 8086	3	3	2					1		1		1	3	3	3
CO2	Write assembly language programs	3	3	2	2				1		1		1	3	3	3
CO3	Use DOS functions and Directives in ALP	3	3	2	2				1		1		1	3	3	3
CO4	Study and interface coprocessor and memory devices.	3	3	2	3				1		1		1	3	3	3
CO5	Interface different peripheral devices to 8086	3	3	2	3				1		1		1	3	3	3
	Average	3	3	2	2				1		1		1	3	3	3

A	NALOG COMMUNICATION	
Subject Code	19EC45	CIE: 50
Number of Lecture Hours/Week	4 Hours (Theory)	SEE: 50
Total Number of Lecture Hours	52	SEE Hours: 03
	Credits-4	
Ν	Iodule-1	Teaching Hours
expectation, transformation of variables, the central limit theory	Probability and random variables, random variables, Gaussian random orem, random processes, correlation of random signals, Gaussian processes,	11 Hours
Ν	Iodule-2	
double sideband suppressed	plitude modulation, double sideband, carrier modulation, SSB modulation, costas receiver, quardrature-amplitude	10 Hours
Ν	Iodule-3	
band frequency modulation, transmission bandwidth of Fl demodulation of FM signals, ef	between PM and FM waves, narrow- wide-band Frequency Modulation, M waves, generation of FM waves,	11 Hours
equivalent noise temperature network, free space link calcula Noise in Analog Communicat systems, signal to noise ratio, linear receivers using coherent		10 Hours
Ν	Iodule-5	
receiver- RF section, freque frequency, AGC. Receiver para and its comparison with AM rec Pulse modulation : Types of	y) and demodulation. PAM generation	10 Hours
	ts of analogue communication systems various issues related to analogue comr ation	nunication such

• To understand effect of noise on the performance of communication system To understand basics of noise calculation

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 20marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module, there will be five modules.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text books:

- 1. Simon Haykin, 'Introduction to Analog and Digital Communications', Second Edition.
- 2. Herbert Taub, Donald L.Schiling' Principles of communication systems, Second Edition

Reference Books:

- 1. Bruce Carlson, 'Communication Systems', McGraw Hill
- 2. Ziemmer, 'Principles of Communication', Wiley India, Ed., 2009
- 3. Dennis Roddy and John Coolen, 'Electronic Communication Systems' PHI.

E books and online course materials: NPTEL

Course outcomes:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
19EC45	CO1	Analyze random variables and random process.
	CO2	Analyze different amplitude modulation and demodulation techniques.
	CO3	Analyze different angle modulation and demodulation techniques.
	CO4	Analyze Noise in Analog communication systems.
	CO5	Analyze the working of Radio receivers, pulse modulation and demodulation techniques.

19EC45: Analog Communication

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Analyze random variables and random process	3	2	2	2				1		1		1	3	2	2
CO2	Analyze different amplitude modulation and demodulation techniques	3	3	2	2				1		1		1	3	2	2
CO3	Analyze different angle modulation and demodulation techniques	3	3	2	2				1		1		1	3	2	2
CO4	Analyze Noise in Analog communication systems	3	3	2	2				1		1		1	3	2	2
CO5	Analyze the working of Radio receivers, pulse modulation and demodulation techniques	3	2	2	2				1		1		1	3	2	2
		3	2.6	2	2				1		1		1	3	2	2

	ANALOG EL	ECTRONICS LABORATORY	
Subject	Code	19ECL41	CIE: 50
Number of Hours/		02 Hours(Practical)	SEE: 50
Total Number of	Lecture Hours		SEE Hours: 03
		CREDITS –1	
 i) Inv ii) Ad iii) Diff iv) Int 2. Non lii i) Cor ii) Sch iii) Mo 3. Monst 4. Astabl 5. DAC 6. ADC 7. PLL aj 8. Voltag Conduct of Practica All laborator Students are Strictly follo script for bre Change of exrks. 	y experiments are a allowed to pick on w the instructions a akup of marks. speriment is allowe	Op-amp ole operation g 555 timer 555 timer to be included for practical examination e experiment from the lot. as printed on the cover page of answer ed only once and will be evaluated for	r
On completion of the Course Code:	he course, the stud CO #	dent will have the ability to: Course Outcome (CO)	
19ECL41	C01	Implementation of linear application	
	CO2	Implementation of non-linear applic	
	CO3	Implementation of 555 timer application	ation.
	CO4	Implementation of data converters.	
	CO5	Design of voltage regulators.	

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement linear applications of op-amp	3	2	2		1	1	1	2	3	2		1	3	2	2
CO2	Implement non-linear applications of op-amp	3	2	2		1	1	1	2	3	2		1	3	2	2
CO3	Implement 555 timer application	3	2	2		1	1	1	2	3	2		1	3	2	2
CO4	Implement data converters	3	2	2		1	1	1	2	3	2		1	3	2	2
CO5	Design of voltage regulators	3	2	2		1	1	1	2	3	2		1	3	2	2
		3	2	2		1	1	1	2	3	2		1	3	2	2

19ECL41: Analog Electronics lab

	ANAL	OG COMMUNICATION LAB	
Subject	t Code	19ECL42	CIE: 50
Numb Lect Hours/	ture	02 Hours(Practical)	SEE: 50
Total Number of	f Lecture Hours		SEE Hours: 03
		CREDITS- 1	
 Balanced modul Frequency module Frequency module Pre-emphasis and Automatic Gain PAM modulation PPM Modulation PPM Modulation Analog Mixer C Second order and Second order and Course objectives: After studying this of Conduct of Practice All laborator Strictly follow Script for br Change of earries. 	lation and SSB gulation and Demo and De-emphasis of Control in AM on and Demodulation and Demodulation and Demodulation Circuit. Circuit. Cive high/low pass a course, students we cal Examination ry experiments and course allowed to pick ow the instruction reakup of marks. Experiment is allowed to pick the course, the states	bodulation using PLL circuits. tion ion ion iss filters. nd band stop filters. will be able to: : re to be included for practical examination one experiment from the lot. as as printed on the cover page of answ wed only once and will be evaluated for tudent will have the ability to:	er
Course Code	CO #	Course Outcome (CO)	
19ECL42	CO1	Implementation of various second	d order active filters.
	CO2	Implementation of AM and demo	dulation.
	CO3	Implementation of FM and demo	dulation.
	<u> </u>	Implementation of ma emphasics	
	CO4	Implementation of pre-emphasis a	ind de-emphasis.

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Implement various second order active filters	3	2	2		1	1	1	2	3	2		1	3	2	2
CO2	Implement AM and demodulation	3	2	2		1	1	1	2	3	2		1	3	2	2
CO3	Implement FM and demodulation	3	2	2		1	1	1	2	3	2		1	3	2	2
CO4	Implement pre-emphasis and de- emphasis	3	2	2		1	1	1	2	3	2		1	3	2	2
CO5	Implement pulse modulation techniques	3	2	2		1	1	1	2	3	2		1	3	2	2
		3	2	2		1	1	1	2	3	2		1	3	2	2

19ECL42: Analog Communication lab

MICROPROCESSOR AND INTERFACES LAB

Subject Code	19ECL43	CIE: 50
Number of Lecture Hours/Week	02 Hours(Practical)	SEE: 50
Total Number of Lecture Hours		SEE Hours: 03
	CREDITS- 1	
8086 BASED PR	OGRAMMING	
1. Data transfer instructions:		
i. Byte and word data transfer in different .	Addressing Modes.	
ii. Block move (with and without overlap).		
iii. Block interchange.		
2. Arithmetic & logical operations:		
i. Addition and Subtraction of n- bit number	ers.	
ii. Multiplication and Division of signed an	nd unsigned Hexadecimal nos.	
iii. ASCII adjustment instructions		
iv. Code conversions		
v. Arithmetic programs to find square cube	e, LCM, GCD, factorial.	
3. Bit manipulation instructions:		
i. Whether given data is positive or negative	ve	
ii. Whether given data is odd or even		
iii. Counting Logical 1's and 0's in a giver	n data	
iv. 2 out of 5 codes		
v. Bit wise and nibble wise palindrome.		
4. Branch/Loop instructions:		
i. Arrays: addition/subtraction of 'N' no's.		
ii. Finding largest and smallest nos.		
iii. Arranging numbers in Ascending / deso	0	
ii. Near and Far Conditional and Uncondit		
5. Programs on String manipulation: str	• • •	hing for a string.
6. Programs involving Software interrup	-	
Programs to use DOS interrupt INT 21h F		
Reading a Character from keyboard, Buffe	ered Keyboard input,	
Display of character/ String on console		
7. EXPERIMENTS ON INTERFACING 8086		
i. Matrix keyboard interfacing		
ii. Seven segment display interface		
iii. Logical controller interface		
iv. Stepper motor interface		
Conduct of Practical Examination:	e included for practical examinatio	n
 An laboratory experiments are to b Students are allowed to pick one ex 	-	11
 Students are anowed to pick one ex Strictly follow the instructions as p 	-	
Script for breakup of marks.		
	only once and will be evaluated for	85% of the total ma
rks.		

Course outcomes: On completion of t	the course, the s	tudent will have the ability to:
Course Code	CO #	Course Outcome (CO)
19ECL43	CO1	Program 8086 for data transfer.
	CO2	Program 8086 for arithmetic and logic control application.
	CO3	Program 8086 for bit and string operations.
	CO4	Program 8086 using DOS functions.
	CO5	Program to interface 8086 with external peripheral devices.

icroprocessors and interfaces lab

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1
am 8086 for data transfer	3	3	3	2	2	1	1	2	3	2		1	3
ram 8086 for arithmetic and control application	3	3	3	2	2	1	1	2	3	2		1	3
ram 8086, implementing upts	3	3	3	2	2	1	1	2	3	2		1	3
am timer applications	3	3	3	2	2	1	1	2	3	2		1	3
ace 8086 with external heral devices	3	3	3	3	2	1	1	2	3	2		1	3
	3	3	3	2.8	2	1	1	2	3	2		1	3