LINEAR CONTROL SYSTEMS									
Course Code	21EC51	Credits		3					
Course Type	Theory	CIE Marks	50						
Lecture Hours(L:T:P)	3:0:0	SEE Marks	50						
Total Hours	42	SEE Hours		3					
 Course objectives: This course will enable students to: To teach the fundamental concepts of Control systems and mathematical modeling of thesystem To study the concept of time response and frequency response of the system To teach the basics of stability analysis of the system 									
	Module-1			Teaching Hours					
Basic concepts: Open-loo Mathematical Models systems, transfer function	p and Closed-loop control of Physical Systems: s, Block diagram algebra,	systems. Differential equations o Signal flow graphs.	f physical	9					
	Module-2								
Time Response Analysis	Standard test signals, Tin	me response of first and se	econd order						
systems, Effect of adding	g a zero to a system, Time	e response specifications, S	Steady state	8					
errors and error constants. Performance indices.									
Module-3									
Concept of stability and algebraic criteria: The concept of stability, Necessary conditions									
for stability, Routh & Hurwitz stability criterions, Relative stability analysis.									
The Root Locus Technique: The Root Locus concept, Construction of Root Loci.									
Fraguency response and	Module-4	time and frequency resp	onse Rode						
plots General procedure	for constructing Bode plo	te	olise, Doue						
Polar plots Stability in	frequency domain _Nva	uist stability criteria Ass	essment of	8					
relative stability using Ny	auist criteria	uist stability criteria, Ass							
Telative stability using ity	Module-5								
State Variable Analysis a	and Design: Concept of st	tate, state variables and sta	ate models.						
State model for Linear co	ontinuous time systems, S	tate variables and linear di	iscrete-time	8					
systems, Diagonalization,	Solution of state equation	s, Controllability and Obse	rvability.	-					
Ouestion paper pattern:	1	, <u>,</u>							
The question pape	r shall have five Module for	or 100 marks;							
Each full question	carries 20 marks.								
• Two questions to	be set in each module (tota	l ten questions).							
• The candidate will Note: There can be a max	have to answer one full q	uestion from each module.							
Text Books:									
 I J Nagrath and M Gopal, Control systems and Engineering, New Age Publishers 6th Edition-2017. K Ogata, Modern Control Engineering, PHI 3rd Edition-2001 									
Reference Books:									
1. Kuo B C, Control Engineering									
E books and online course materials: NPTEL									
On completion of the cou	rse the student will have t	he ability to:							
on completion of the cou									

Course Code	CO #	Course Outcome (CO)
	CO1	Analyze physical systems using differential equations, block diagrams and signal flow graphs.
	CO2	Analyze time response of first and second ordersystems.
21EC51	CO3	Construct the root locus and analyze the stability of the system in time domain.
	CO4	Construct Bode plot, Polar plot and analyze the stability in the frequency domain.
	CO5	Obtain state models for linear systems and determine for observability and controllability.

21EC51: Linear Control Systems

CO#	Course Outcome (CO)	РО											PSO			
Course Outcome (CO)		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Analyze physical systems using differential equations, block diagrams and signal flow graphs.	3	3	2					1		1		1	3	2	2
CO2	Analyze time response of first and second ordersystems.	3	3	2					1		1		1	3	2	2
CO3	Construct the root locus and analyze the stability of the system in time domain.	3	3	2		2			1		1		1	3	2	2
CO4	Construct Bode plot, Polar plot and analyze the stability in the frequency domain.	3	3	2		2			1		1		1	3	2	2
CO5	Obtain state models for linear systems and determine for observability and controllability.	3	3	2					1		1		1	3	2	3
	Average	3	3	2		2			1		1		1	3	2	2.2

	DIGITAL SIGNAI	PROCESSING						
Course Code	21EC52	Credits		4				
Course Type	Integrated	CIE Marks	50					
Lecture Hours(L:T:P)	3:0:2	SEE Marks	50					
Total Hours	42 (Theory)+14 Lab Slots	SEE Hours		3				
 Course objectives: This course will enable students to study: Basic concepts of digital signal processing. Analysis and processing of signals for different kind of applications and retrieval information from signals. Design of digital filters and its realization. Analysis of signals using the discrete Fourier transforms (DFT) and Z-Transform. 								
	Wiodule			Hours				
D'	Modul	<u>e -1</u>	D' (
Fourier Series, Propertie of finite duration seque Examples on DFT prope	storm: Representation of ples of DFS, Sampling the Z-t nces – The Discrete Fourie erties.	eriodic sequences – The transform, Fourier Represer Transform, Properties	Discrete sentation of DFT,	9				
	Modul	e -2						
 DFT Continued: Linear filtering using DFT, Filtering of long data sequences, and Frequency analysis of signals using DFT. Computation of the Discrete Fourier Transform: Goertzel algorithm, Decimation in Time algorithms, Decimation in Frequency algorithms, FFT algorithms for N a composite number. Chirp Z-Transform algorithm. 								
IID Filtors: Design of	IID digital filters from An	log filters Impulse In	vorionce					
Design based on nu transformation, Characte Analog to digital Transf IIR and FIR filters	merical solution of the eristics of commonly used A formation. Frequency transfo	differential equation, Analog filters, Design exa ormations. Comparison o	Bilinear amples – f Digital	9				
	Modul	e -4						
FIR Filters: Properties windows and frequency Hilbert Transforms.	of FIR digital filters, Design sampling method, Design	of Linear phase FIR filt of FIR differentiators, D	ers using Design of	8				
	Modul	e-5						
Digital Filter Structures:Basic Network structures for IIR filters – Direct forms, Cascade form, Parallel form, transposed form, Lattice structures, Basic network structures for FIR Systems – Direct forms Cascade form, Networks for Linear phase FIR systems, Frequency sampling structure, Lattice structure.								
Question paper pattern • The question pap • Each full question • Two questions to • The candidate with Note: There can be an Text book: 1 A V Oppenheim and b	n: ber shall have five Module for n carries 20 marks. be set in each module (total ill have to answer one full qu maximum of 4 subsections R W Schafer, Digital Signal	or 100 marks; ten questions). testion from each module in each Question.						

Reference Books:

1. J.G.Proakis and D.G.Manolakis, Digital Signal Processing- Principals, Algorithms and Applications, PHI.

- 2. Rabiner and Gold, Theory and Applications of Digital Signal Processing, PHI
- 3. SanjitK.Mitra, Digital Signal- A computer- Based Approach, TMH.

List of Experiments

- 1. Introduction to MATLAB
- 2. Verification of sampling theorem
- 3. Generation of signals (Sinusoidal signals, Exponential signals etc.)
- 4. Operations on signals (Time shifting, time scaling and amplitude scaling)
- 5. Solution of difference equations.
- 6. Linear convolution, circular convolution.
- 7. Fourier representation of Discrete-time signals (DTFT, DFS), Properties of DTFT and DFS.
- 8. Discrete Fourier Transform(DFT), Properties of DFT
- 9. Linear filtering using DFT
- 10. DFT and IDFT using radix-2 FFT algorithm.
- 1. Design and implement digital IIR filters
- 12. Design and implement digital FIR filters

Course outcomes:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
	CO1	Compute the Discrete Fourier Transform (DFT) of a sequence.
	CO2	Analyze the efficient computation of DFT using Fast Fourier Transform.
21EC52	CO3	Design FIR filters using Windows and frequency sampling Techniques.
	CO4	Design digital IIR filters from Analog filters.
	CO5	Realize digital filters using Network structures.

21EC52: Digital Signal Processing

CO#	Course Outcome (CO)	РО												PSO		
0.0		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1																
CO2																
CO3																
CO4																
CO5																

FIELD THEORY AND ANTENNAS

Course Code	21EC53	Credits	3								
Course Type	Theory	CIE Marks	50								
Lecture Hours(L:T:P)	3:0:0	SEE Marks	50								
Total Hours	42	SEE Hours	3								

Course Objectives: The objectives of the course is to enable students:

- To understand the theory of vector analysis
- To understand the concepts of electrostatics, electrical potential, energy density and their applications.
- To analyze the concepts of magneto statics, magnetic flux density, scalar and vector potential and its applications
- To explore Biot Savart's Law, Ampere's Law, Faraday's Laws, and Maxwell'sequations

Module	Teaching Hours						
Module-1							
Electric field intensity: Electric field due to continuous volume charge, line charge,							
sheet charge. Electric flux density, Gauss law and Divergence: electric flux density,							
Gauss law and its applications, divergence theorem.							
Energy and potential: Energy and potential in a moving point charge in an electric	9						
field, line integral, potential difference and potential, potential field of a point charge,)						
The potential field of a system of charges- conservative property, potential							
gradient, the dipole, Laplace and Poisson's equations.							
Module-2							
Magnetic Fields: Steady Magnetic fields: Biot savart's law, Ampere's circuital law,							
Curl. Stokes theorem, magnetic flux and flux density, magnetic force between							
differential current elements, magnetic boundary conditions	8						
Time varying fields and Maxwell's equations: Faraday's law, displacement current,							
Maxwell's equations in point form and integral form, the retarded potentials.							
Module-3							
Introduction to Antenna: Principle of radiation, isotropic radiator, radiation							
resistance, radiation pattern, beam width, bandwidth, directivity, gain, effective length	0						
of an antenna, relationship between gain and radiating efficiency, power gain, Frii's	8						
transmission formula.							
Module-4							
Antenna arrays: Point sources, two element arrays of equal amplitude and same							
phase, equal amplitude and opposite phase and unequal amplitude and any phase,	8						
broad side and end fire arrays, multiplication of patterns, Binomial arrays, Effectof	0						
earth on vertical pattern							
Module-5							
Antenna Measurement: Methods of measuring impedance, field pattern, gain and							
directivity.	0						
Antenna Types: Yagi-Uda antenna, folded dipole antenna, parabolic reflectors, loop	9						
antenna, Helical antenna, horn antenna, patch antenna, slot antenna							
Question paper pattern:							
 The question paper shall have five Module for 100 marks; 							
• Each full question carries 20 marks.							
• Two questions to be set in each module (total ten questions).							
• The candidate will have to answer one full question from each module.							
Note: There can be a maximum of 4 subsections in each Ouestion.							

Text Books:

- 1. William H Hayt Jr and John A Buck., Engineering electromagnetic, TMH 7th ed.
- 2. K D Prasad, Antenna and Wave propagation, Satyaprakashan Publishers, 2012

Reference Books:

- 1. John D Kraus, Antennas, Third Edition, McGrawHill
- 2. Jordan and Balmain, Electromagnetic waves and radiating systems, Second Edition, PHI
- 3. C A Balanis, Antenna theory analysis and design, Third Edition, Wiley
- 4. E C Jordon & K G . Balmain., electromagnetic waves and radiation system., PHI2nd ed
- 5. Kraus J D and Carver K R., electromagnetic., (TMH)
- 6. P V Gupta., An Introduction Course in electromagnetic.
- 7. P. N. O Sadiku, "Elements of electromagnetic" 4th ed. Oxford University press.

E books and online course materials:

Course outcomes:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
	CO1	Analyze the Electric fields due to different sources of electric fields
	CO2 Analyze Steady and time varying magnetic fields	
21EC53	CO3	Determine the characteristic parameters of antennas
	CO4	Analyze antenna arrays.
	CO5	Illustrate the construction and working of different types of antennas.

21EC53: Field Theory and Antennas

CO#	Course Outcome (CO)	РО											PSO			
0.0#	Course Outcome (CO)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Analyze the Electric fields due to different sources of electric fields	3	3	2					1		1		1	3	2	2
	Analyza Staady and time															
CO2	varying magnetic fields	3	3	2					1		1		1	3	2	2
	Determine the characteristic															
CO3	parameters of antennas	3	2						1		1		1	3	2	2
CO4	Analyze antenna arrays.	3	3	2	2				1		1		1	3	2	2
	Illustrate the construction and		5	2	2				1		1		1	5		4
CO5	working of different types of antennas.	3	2	2	2				1		1			3	2	3
	AVERAGE	3	2.6	2	2				1		1		1	3	2	2.2

ANALOG AND DIGITAL COMMUNICATION

Course Code	21EC54	Credits	3
Course Type	Theory	CIE Marks	50
Lecture Hours(L:T:P)	3:0:0	SEE Marks	50
Total Hours	42	SEE Hours	3

Course Objectives: The objectives of the course is to enable students:

- 1. To introduce the concepts of analogue communication systems.
- 2. To equip students with various issues related to analogue communication such as modulation, demodulation.
- 3. To understand different PCM techniques and its analysis in terms of SNR.
- 4. To understand different carrier modulation techniques and its BER performance.
- 5. To study and understand properties of orthogonal codes and its use in spread spectrum communication

Modules	Teaching Hours						
Module-1							
Amplitude Modulation: Amplitude modulation, double sideband, double sideband							
suppressed carrier modulation, SSB modulation, vestigial sideband modulation, costas	Q						
receiver, quardrature-amplitude modulation.	o						
Module-2							
Angle Modulation: Basic definitions, properties of angle-modulated waves,							
relationship between PM and FM waves, narrow-band frequency modulation, wide-band							
Frequency Modulation, transmission bandwidth of FM waves, generation of FM waves,	0						
demodulation of FM signals	9						
Radio Receivers: Tuned radio frequency receiver, super heterodyne receiver- RF							
section, frequency mixers, tracking, intermediate frequency, AGC.							
Module-3							
Pulse Modulation systems: Pulse amplitude modulation (PAM), Pulse width modulation							
(PWM) and Pulse position modulation (PPM). Bandwidth requirements, generation and							
reconstruction methods, Analog to digital conversion, quantization and encoding	0						
techniques, quantization noise in PCM, Companding in PCM systems, Time division	9						
multiplexing (TDM), The delta modulator and its operation, quantization noise and slope							
overload in delta modulators. Comparison of delta modulation and PCM.							
Module-4							
Digital Modulation: PSK, DPSK and FSK. M-array data communication systems,							
QAM systems, four phase PSK effects of noise in modulated digital communication	8						
Systems, Probability of error expression for binary communications, probability of error	0						
in QAM systems, comparison of digital modulation systems.							
Module-5							
Spread Spectrum Systems: PN sequence, PN sequence generation, Properties of PN							
sequence, Direct sequence Spread spectrum, Slow and fast Frequency hopping, Time	8						
hopping, Signal space dimensionality and processing gain, antijam characteristics,	0						
CDMA Applications, comparison of spread spectrum communication.							
Question paper pattern:							
• The question paper shall have five Module for 100 marks;							
• Each full question carries 20 marks.							

- Two questions to be set in each module (total ten questions).
- The candidate will have to answer one full question from each module.
- Note: There can be a maximum of 4 subsections in each Question.

Text Books:

- 1. Simon Haykin, 'Introduction to Analog and Digital Communications', Second Edition.
- 2. Herbert Taub, Donald L.Schiling, 'Principles of Communication Systems', Second Edition.

Reference Books:

- 1. Simon Haykin, Digital Communications, John Wiley and Sons.
- 2. H.P.Hsu, Analog and Digital Communications, Schuam's outline series.
- 3. J G Proakis, Digital communications, MH.
- 4. B P Lathi, Modern Digital and Analog Communication, 3rd Edition.

E books and online course materials: NPTEL

Course outcomes:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
	CO1	Analyze different amplitude modulation and demodulation techniques.
	CO2	Analyze different angle modulation and demodulation techniques.
21EC54	CO3	Analyze different PCM techniques and its analysis in terms of SNR
	CO4	Analyze different carrier modulation techniques and its BER performance
	C05	Analyze properties of orthogonal codes and its use in spread spectrum communication.

21EC54: Analog and Digital Communication

CO#	Course Outcome (CO)		РО											PSO		
0.0#			2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Analyze different amplitude modulation and demodulation techniques.		2	2	2				1		1		1	3	2	2
CO2	Analyze different angle modulation and demodulation techniques.	3	3	2	2				1		1		1	3	2	2
CO3	Analyze different PCM techniques and its analysis in terms of SNR		3	2	2				1		1		1	3	2	2
CO4	Analyze different carrier modulation techniques and its BER performance	3	3	2	2				1		1		1	3	2	2
CO5	Analyze properties of orthogonal codes and its use in spread spectrum communication.	3	2	2	2				1		1		1	3	2	2
Average		3	2.6	2	2				1		1		1	3	2	2

ANALOG & DIGITAL COMMUNICATION LAB											
Course Code		21ECL55	Credits	1							
Course Type		Practical	CIE Marks	50							
Lecture Hours(L:T	P)	0:0:2	SEE Marks	50							
Total Hours		28	SEE Hours	3							
 Course Objectives: The objectives of the course is to enable students: To design and demonstrate second order active low pass, high pass, band pass filters To design and demonstrate analog and angle modulation. To design and demonstrate pulse modulation and demodulation. To design and demonstrate digital modulation and demodulation such ASK, PSK, DPSK and FSK. To verify and demonstrate PN sequence generation. 											
1. Second order	r active low	pass and high pass	filter								
2. Second order	active band	pass and band eli	mination filter								
3. Amplitude m	odulation a	nd demodulation us	sing envelop detector								
4. Frequency m	odulation a	nd demodulation us	ing PLL								
5. Pre-emphasi	s and De-em	phasis circuits.	8								
6. PAM modula	ation and de	modulation									
7 PPM Modul	ation and de	modulation									
8 PWM Modul	lation and de	emodulation									
0. Signal sampl	ing and its r	econstruction									
9. Signal samp	n multiplayi	ng of signals									
10. Time divisio	ii iiuitipiexi	lig of signals									
12 E											
12. Frequency s	hift keying										
13. Phase shift k	eying										
14. Differential j	bhase shift k	eying									
15. PN sequence	generator										
Conduct of Practic	al Examina	tion:									
• All laborator	y experimer	its are to be include	ed for practical examination	n							
• Students are	allowed to p	oick one experimen	t from the lot.								
• Strictly 10110 Script for bre	w the instru-	rks	the cover page of answer								
Change of ex Marks.	speriment is	allowed only once	and will be evaluated for 8	35% of the total							
Course outcomes: On completion of th	e course, the	e student will have	the ability to:								
Course Code	CO #		Course Outcome (CO))							
	CO1	Design various se	cond order active filters.								
CO2 Design AM FM and its demodulation											
	CO3	Design pre-emplo	asis and de-emphasis								
21ECL55	CO4	Design and imple	ment ASK, FSK and PSK	modulation and							
		demodulation.									
	CO5	Design and imple	ment PN sequence generat	or.							

CO#	Course Outcome (CO)		РО											PSO		
0.0	Course Outcome (CO)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Design various second order active filters.	3	2	2	2	2	1	1	2	3	2		1	3	3	2
CO2	Design AM, FM and its demodulation.	3	2	2	2	2	1	1	2	3	2		1	3	3	2
CO3	Design pre-emphasis and de- emphasis.	3	2	2	2	2	1	1	2	3	2		1	3	3	2
CO4	Design and implement ASK, FSK and PSK modulation and demodulation.	3	2	2	2	2	1	1	2	3	2		1	3	3	2
CO5	Design and implement PN sequence generator.	3	2	2	2	2	1	1	2	3	2		1	3	3	2
Average			2	2	2	2	1	1	2	3	2		1	3	3	2

21ECL55: Analog and Digital Communication Lab

RESEARCH METHODOLOGY & INTELLECTUAL PROPERTY RIGHTS												
Course Code	21RMI56	Credits		2								
Course Type	Theory	CIE Marks	4	50								
Lecture Hours(L:T:P)	1:2:0	5	50									
Total Hours	28	SEE Hours		3								
 To Understand the knowledge on basics of research and its types. To Learn the concept of defining research problem and Literature Review, Technica To learn the concept of attributions and citation and research design. Concepts, classification, need for protection, International regime of IPRs - WIPO, T Patent - Meaning, Types, surrender, revocation, restoration, Infringement, Procedure obtaining Patent and Patent Agents. Meaning, essential requirements, procedure for registration and Infringement of Inde Designs, Copyright. 												
Modules												
Module-1 Introduction: Meaning of Research, Objectives of Engineering Research, and Motivation in Engineering Research, Types of Engineering Research, Finding and Solving a Worthwhile Problem. Ethics in Engineering Research, Ethics in Engineering Research Practice, Types of Research Misconduct, Ethical Issues Related to Authorship Module-2 Defining the research problem - Selecting the problem. Necessity of defining the												
Defining the research problem - Selecting the problem. Necessity of defining the problem Techniques involved in defining the problem- Importance of literature review in defining a problem Literature Review and Technical Reading, New and Existing Knowledge, Analysis and Synthesis of Prior Art Bibliographic Databases, Web of Science, Google and Google Scholar, Effective Search: The Way Forward Introduction to Technical Reading Conceptualizing Research, Critical and Creative Reading, Taking Notes While Reading, Reading Mathematics and Algorithms, Reading a Datasheet.												
Module-3 Research design and methods - Research design - Basic principles. Need of research design Features of good design- Important concepts relating to research design - Observation and Facts Attributions and Citations: Giving Credit Wherever Due, Citations: Functions and Attributes, Impact of Title and Keywords on Citations, Knowledge Flow through Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments.												
Module-4 Basic Concepts of Intellectual Property (IP), Classification of IP, Need for Protection of IP, International regime of IPRs - WIPO , TRIPS. Patents: Meaning of a Patent – Characteristics/ Features. Patentable and Non-Patentable Invention. Procedure for obtaining Patent. Surrender of Patent, revocation & restoration of Patents, Infringement of Patents and related remedies (penalties) . Different prescribed forms used in Patent Act. Patent agentsqualifications and disqualifications Case studies on patents - Case study of Neem petent, Curcuma(Turmeric)patent and Basmati rice patent, Apple inc.v												

		Module-5								
Industrial Desi	gn: Intr	oduction to Industrial Designs. Essential requirements of								
Registration. D	esigns w	hich are not registrable, who is entitled to seek Registration,								
Procedure for	Registra	ation of Designs Copy Right Meaning of Copy Right.	_							
Characteristics	of Copy	right. Who is Author, various rights of owner of Copyright.	5							
Procedure for	Procedure for registration. Term of copyright, Infringement of Copyright and Its									
remedies. Software Copyright.										
Question paper pattern:										
• The question paper shall have five Module for 100 marks;										
• Each ful	I question	n carries 20 marks.								
• Two que	didate wi	be set in each module (lotal ten questions).								
Note: There	can be a	maximum of 4 subsections in each Question								
Text Books:	eun oe u									
1. Research M 4 th Edition,2	ethodolog 018	gy: Methods and Techniques C.R.Kothari, Gaurav Garg New Age	International							
2. Dipankar D	eb•Rajee	bDey,ValentinaE.Balas "EngineeringResearchMethodology",ISSN	N1868- 4394							
ISSN 1868-	4408 (el	ectronic), Intelligent Systems Reference Library, ISBN 978-981	-13- 2946-3							
ISBN 978-9	81-13-29	47-0 (eBook), <u>https://doi.org/10.1007/978-981-13-2947-0.3</u>	~ 11							
3. Dr. M.K. Bl	handari"l	Law relating to Intellectual property" January 2017 (Publisher By	Central Law							
Publications). Dr. K	Kadha Krishna and Dr. S Balasubramanain "Text book of Intellec	tual Property							
Right". First edition, New Delhi 2008. Excel books.										
4. I Narayan	10A1 000	k of menetual Property Right . 2017, i ubisher. Eastern Eaw 110	use							
Reference Bool1. David V.Th2. Nishith Desa	k s: iel"Resea ai Associ	archMethodsforEngineers"CambridgeUniversityPress,978-1-107-0. ates - Intellectual property law in India – Legal, Regulatory & Tax	3488- 4-							
E books and on	line cou	rse materials:								
NPTEL: INT	TELLEC	TUAL PROPERTY by PROF.FEROZ ALI, Department of Human	nities and							
Social Scien	ices IIT N	Aadras https://nptel.ac.in/content/syllabus_pdf/109106137.pdf								
• <u>www.wipo.i</u>	<u>nt</u>									
• <u>www.ipindia</u>	<u>a.nic.in</u>									
Course outcom	es:									
On completion	of the co	purse, the student will have the ability to:								
Course Code	CO #	Course Outcome (CO)								
	CO1	To know them leaning of engineering research.								
	CO2	To know the defining of research problem and procedure of Review.	of Literature							
21RMI56	CO3	To know the Attributions and Citations and research design.								
	CO4	Highlights the basic Concepts and types of IPRs and Patents								
	CO5	Analyse and verify the procedure for Registration of Industria Copyrights	l Designs &							

INTRODUCTION TO WEB PROGRAMMING										
Course Code 21ECAE582 Credits										
Course Type	Practical	CIE Marks	50							
Lecture Hours(L:T:P)	50									
Total Hours	SEE Hours	2								
Course Objectives: The • To use the syntax • To develop differe • To understand how • To create and app • To get familiarit handling of Java S	e objectives of the course i and semantics of HTML a ent parts of a web page. w CSS can enhance the dea ly CSS styling to a webpag y with the JavaScript la Script.	s to enable students to: nd XHTML. sign of a webpage. ge. inguage and understand l	Document Object Model							
Modules										

Module-1	
Traditional HTML and XHTML: First Look at HTML and XHTML, Hello HTML and	
XHTML World, HTML and XHTML: Version History, HTML and XHTML DTDs: The	-
Specifications Up Close, (X)HTML Document Structure, Browsers and (X)HTML, The	5
Rules of (X)HTML, Major Themes of (X)HTML, The Future of Markup—Two Paths?	
Module-2	
HTML5: Hello HTML5, Loose Syntax Returns, XHTML5, HTML5: Embracing the	
Reality of Web Markup, Presentational Markup Removed and Redefined, HTML5	
Document Structure Changes, Adding Semantics, HTML5's Open Media Effort, Client-	5
Side Graphics with <canvas>, HTML5 Form Changes, Emerging Elements and Attributes</canvas>	
to Support Web Applications	
Module-3	
Cascading Style Sheets (CSS): Introduction, CSS Overview , CSS Rules, Example with	
Type Selectors and the Universal Selector CSS Syntax and Style Class Selectors ID	

Type Selectors and the Universal Selector, CSS Syntax and Style, Class Selectors, ID	
Selectors, span and div Elements, Cascading, style Attribute, style Container, External	
CSS Files, CSS Properties, Color Properties, RGB Values for Color, Opacity Values for	6
Color, HSL and HSLA Values for Color, Font Properties, line-height Property, Text	
Properties, Border Properties, Element Box, padding Property, margin Property, Case	
Study: Description of a Small City's Core Area.	

Module-4

6

Tables and CSS, Links and Images: Table Elements, Formatting a Data Table: Borders,
Alignment, and Padding, CSS Structural Pseudo- Class Selectors, thread and tbody
Elements, Cell Spanning, Web Accessibility, CSS display Property with Table Values, a
Element, Relative URLs, Navigation Within a Web Page, CSS for Links, Bitmap Image
Formats: GIF, JPEG, PNG, img Element, Responsive Images, Positioning Images,
Shortcut Icon, iframe Element.

Module-5								
Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers: History of								
JavaScript, Hello World Web Page, Buttons, Functions, Variables, Identifiers,								
Assignment Statements and Objects, Document Object Model, Forms and How They're								
Processed: Client-Side Versus Server-Side, form Element, Controls, Text Control,								
Accessing a Form's Control Values, reset and focus Methods								

Question paper pattern:

- The question paper shall have five Module for 100 marks;
- Each full question carries 20 marks.
- Two questions to be set in each module (total ten questions).
- The candidate will have to answer one full question from each module.

Note: There can be a maximum of 4 subsections in each Question.

Text Books:

- 1. HTML & CSS: The Complete Reference Thomas A. Powell, , Fifth Edition, Tata McGraw Hill.
- 2. Web Programming with HTML5, CSS and JavaScript, John Dean, Jones & Bartlett Learning, First Edition

Reference Books:

- 1. M Deitel, P.J. Deitel, A.B Goldberg, "Internet & World Wide Web How to H Program"-3rd Edition, Pearson Education/PHI, 2004.
- 2. Chris Bates, "Web Programming Building Internet Applications"- 3rd Edition, Wiley India, 2006.

E books and online course materials:

https://onlinecourses.swayam2.ac.in/aic20_sp11/preview

Course outcomes:

On completion of the course, the student will have the ability to:

Course Code	CO #	Course Outcome (CO)
	CO1	Explain the historical context and justification for HTML over XHTML
	CO2	Develop HTML5 documents and adding various semantic markup tags
21ECAE582	CO3	Analyse various attributes, values and types of CSS
	CO4	Develop the ability to create own website for given assignment and also perform dynamic designing using CSS.
	CO5	Implement core constructs and event handling mechanisms of JavaScript.

21ECAE582: Introduction to Web Programming

CO#	Course Outcome (CO)		РО											PSO		
0.0#	Course Outcome (CO)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Explain the historical context and justification for HTML over XHTML	2	2	2	2				2		2		2			3
CO2	Develop HTML5 documents and adding various semantic markup tags	2	2	2	3				2		2		2			3
CO3	Analyse various attributes, values and types of CSS	2	2	3	3				2		2		2			3
CO4	Develop the ability to create own website for given assignment and also perform dynamic designing using CSS	2	2	3	3				2		2		2			3
CO5	Implement core constructs and event handling mechanisms of JavaScript.	2	2	2	3				2		2		2			3
Average		2	2	2.4	2.8				2		2		2			3

ENVIRONMENTAL STUDIES

[As per Choice Based Credit System (CBCS) Scheme] (From the academic year 2022-23)

Course Code	21CIV57	CIE Marks	50	
Credits	01	SEE Marks	50	
Course Type	Theory			
Lecture Hours/Week (L-T-P)	0-2-0-0	Total Marks	100	
Total Hours	28 Hours	SEE Hours	01	

Course Objectives:

■ To create environmental awareness among the students.

■ To gain knowledge on different types of pollution in the environment.

Teaching-Learning Process(General Instructions)

These are sample Strategies; which teacher can use to accelerate the attainment of the various course outcomes.

- **1.** Apart from conventional lecture methods various types of innovative teaching techniques through videos and animation films may be adopted so that the delivered lesson can progress the students in theoretical, applied and practical skills.
- 2. Environmental awareness program on off campus
- **3.** Encourage collaborative (Group Learning) Learning in the class.Seminars, surprise tests and Quizzes may be arranged for students in respective subjects to develop skills.

Modules	Hours
Module - I Ecosystems (StructureandFunction): Forest, Desert, Wetlands, River, OceanicandLake. Biodiversity:Types,Value;Hot spots; Threatsand Conservation of biodiversity, Forest Wealth, And Deforestation.	05 Hours
Module - II Advances in Energy Systems (Merits, Demerits, Global Status and Applications): Hydrogen, Solar, OTEC, Tidal and Wind. Natural Resource Management (Concept and case-studies): Disaster Management, Sustainable Mining, case studying, and Carbon Trading	05 Hours
Module-III Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case-studies): Surface and Ground Water Pollution; Noise pollution; Soil Pollution and Air Pollution. Waste Management & Public Health Aspects :Bio-medical Wastes; Solid waste; Hazardous, Wastes; E-wastes; Industrial and Municipal Sludge.	06 Hours

Module-IV Global Environmental Concerns (Concept, policies and case-studies): Groundwater depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem In drinking water; Resettlement and rehabilitation of people, Environmental Toxicology.	06 Hours
Module - V Latest Developments in Environmental Pollution Mitigation Tools (Concept and Applications): G.I.S. & Remote Sensing, Environment Impact Assessment, Environmental Management Systems, ISO14001; Environmental Stewardship- NGOs. Field work: Visit to an Environmental Engineering Laboratory or Green Building or Water Treatment Plant or Waste water treatment Plant; ought to be Followed by understanding of process and its brief Documentation in the form of report.	06 Hours

Course outcome(Course Skill Set)

At the end of the course the student will be able to:

- CO1: Understand the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale,
- CO2: Develop critical thinking and/or observation skills, and apply them to the analysis of a problem or question related to the environment.
- CO3: Demonstrate ecology knowledge of a complex relationship between biotic and a biotic components.
- CO4: Apply their ecological knowledge to illustrate and graph a problem and describe the realities that managers face when dealing with complex issues.
- CO5: Understand Latest Developments in Environmental Pollution Mitigation Tools Concept and Applications of G.I.S. & Remote Sensing.

Assessment Details (both CIE and SEE)

The weight age of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE(ContinuousInternalEvaluation)andSEE(SemesterEndExamination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20Marks (duration 01 hour)

- 1. First test at the end of5th week of the semester
- 2. Second test a the end of the 10^{th} week of the semester
- 3. Third test at the end of

the15thweek of the semester Two

assignments each of **10 Marks**

- 4. First assignment at the endof4thweek of the semester
- 5. Second assignment at the end of 9thweek of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the Cos and Pos for **20 Marks** (duration01hours)

6. At the end of the13thweek of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be

Scaled down to 50 marks

(to have less tresses CIE, the portion of the syllabus should not be common/repeated for any of the method of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 01 hours**)

Question paper pattern:

- 1. The Question paper will have 50 objective questions.
- 2. Each question will before 01marks
- 3. Students will have to answer all the questions on an OMR Sheet.
- 4. The Duration of the Exam will be 01 hour

Suggested Learning Resources: Books

1. Environmental studies, Benny Joseph, Tata Mcgraw -Hill 2ndedition 2012[.]

2. Environmental studies, SM Prakash , pristine publishing house, Mangalore3rdedition-2018.

Reference Books:-

- 1. BennyJoseph, Environmental studies, TataMcgraw-Hill2ndedition 2009
- 2. M. Ayi Reddy TextbookofenvironmentalscienceandTechnology,BSpublications2007
- ${\it 3. Dr. B. SChauhan, Environmental studies, university of science press 1 } {\it st} edition$