PDA COLLEGE OF ENGINEERING, KALABURAGI B E. Third Semester

Numerical Analysis & Statistical Methods

(Common to Civil and CCT) [As per Choice Based Credit System (CBCS) scheme]

(From the academic year 2022-23)

Course Code	21MA31A	CIE Marks	50
Credits	03	SEE Marks	50
Contact Hours/Week (L-T-P)	3-0-0	Total Marks	100
Contact Hours	42	Exam Hours	03

Course Learning Objectives: To enable the students to obtain the knowledge of Engineering Mathematics in the following topics

- 1. Numerical methods to solve algebraic and Transcendental equations
- 2. Interpolation methods, Numerical differentiation and Numerical integration
- 3. Numerical solutions ordinary differential equations
- 4. Curve fitting by the method of least squares and correlation
- 5. Introduction to theories of functions of complex variables and contour integration

Module-I

9 hours

Solution of Algebraic And Transcendental Equations: Bisection method, Newton's- Raphson method and Regula falsi method.

Finite differences: Forward and Backward differences, Interpolation, Newton's Forward and Backward interpolation formulae and examples. Langrange's interpolation and inverse interpolation formulae and examples. (all formulae and rules without proof).

RBT Levels: L1, L2 & L3

Module-II

8 hours

Numerical differentiation: Numerical differentiation using Newton's forward and backward interpolation formulae and problems.

Numerical integration: Introduction, Trapezoidal rule, Simpson's 1/3rd, Simpson's 3/8th rule and Weddle's rule. (all rules without proof).

Numerical solutions of first order and first degree ordinary differential equations: Taylors series method, Runge –Kutta method of fourth order, modified Euler's method and Milne's-Thomson's predictor and corrector methods and problems.(all formulae without proof **RBT** Levels: L1, L2 & L3

Module –III

Statistical methods:

Curve fitting by the method of least squares: Straight line, second degree parabola and the curves of the form $y = ab^x$, $y = ax^b$ and $y = ae^{bx}$. Correlation and lines of regression, angle between two regression lines and Rank correlation **RBT** Levels: L1, L2 & L3

Module –IV

9 Hours

Functions of Complex variables: Introduction, limit, continuity, differentiability—Definitions. Analytic function, Cauchy-Riemann equations in Cartesian and polar forms. Applications of analytic function. Conformal transformation. Discussion of transformations: $W=z^2$, $W=e^z$. Bilinear transformations and problems

RBT Levels: L1, L2 & L3

Module-V

8 Hours

Complex integration: line integrals, Cauchy's theorem, Cauchy's integral formula. Taylor's and Laurent's series (Statements only). Singularities, poles, residues, Cauchy's residue theorem. (statement only) and problems.

RBT Levels: L1, L2 & L3

Text Books:

- 1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.
- 2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10thEd.(Reprint),2016.

Reference books:

- 1. Early Transcendental Calculus- James Stewart, Thomson Books, 5e 2007
- 2. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics,

Laxmi Publishers, 7th Ed., 2010.

- 3. B.V.Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010.
- 4. Statistical Methods Authored By Gupta S.P. Publisher: Sultan Chand & Sons. Publishing Year: 2021
- 5.Fundamentals of Mathematical Statistics Authored By Gupta S.C.& Kapoor V.K. Publisher:Sultan Chand & Sons.Publishing Year: 2020

8 hours

Course Outcomes: On completion of this course, students are able to:

- CO1: Solve algebraic and transcendental equations by numerical methods and computation of interpolating polynomials using given data.
- CO2: Compute derivatives of the functions numerically using given data and Evaluate integrations numerically. Apply numerical methods to solve ordinary differential equations

CO3: Apply the method of least square to estimate the parameters in regression model

CO4: Understand C-R equations, analytic functions and its properties.

CO5: Evaluation of complex integrals using the residue theorem and represent functions as

Taylor's and Laurent's series.

Method of Examination:

Note:- The SEE question paper will be set for 100 marks and the marks scored by the student will be proportionately reduced to 50.

- The question paper will have **ten** full questions carrying equal marks.
- Each full question carries **20**marks.
- There will be **two** full questions (with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.

The students will have to answer **five** full questions, selecting **one** full question from each module.