PDA COLLEGE OF ENGINEERING, KALABURAGI B E.Third Semester

Numerical Methods and Optimization Techniques

(Common to CSE & CSD) [As per Choice Based Credit System (CBCS) scheme] (From the academic year 2022-23)

Course Code	21MA31D	CIE Marks	50
Credits	03	SEE Marks	50
Contact Hours/Week (L-T-P)	3-0-0	Total Marks	100
Contact Hours	42	Exam Hours	03

Course Learning Objectives: To enable the students to obtain the knowledge of Engineering Mathematics in the following topics

- 1. Interpolation methods, Numerical differentiation and Numerical integration
- 2. Solve the problems using probability theory.
- 3. Numerical solution of ordinary differential equations.
- 4. Methods of least squares to fit straight line and second degree parabola
- **5.** Linear programming problems

Module-I

9hours

Solution of Algebraic And Transcendental Equations: Bisection method Newton's- Raphson method and Regula falsi method.

Finite differences: Forward and Backward differences, Interpolation, Newton's Forward and Backward interpolation formulae and examples. Langrange's interpolation and inverse interpolation formulae and examples. (all formulae and rules without proof)

RBT Levels: L1, L2 & L3

Module-II

9 hours

Numerical differentiation: Numerical differentiation using Newton's forward and backward interpolation formulae and problems.

Numerical integration: Itroduction, Simpson's 1/3rd, Simpson's 3/8th rule and Weddle's rule (all formulae without proof)

Time series and Forecasting:

Moving averages, smoothening of curves, forecasting models and methods, Statistical Quality control methods

RBT Levels: L1, L2 & L3

Module-III	8 hours
Numerical solutions of first order and first degree ordinary differentia	-
Taylors series method, Runge –Kutta method of fourth order, modif	
and Milne's and Adam's-Bashforth predictor and corrector methods and pro	
solution of Simultaneous ordinary differential equations of first order and s	
differential equations by Runge-kutta method. (all formulae without proof)
RBT Levels: L1, L2 & L3	
Module –IV	8 hours
Statistical methods:	
Curve fitting by the method of least squares: Straight line, second degr	ree parabola and the
curves of the form $y = ab^x$, $y = ax^b$ and $y = ae^{bx}$.	
Correlation and lines of regression, angle between two regression lines and	rank correlation.
RBT Levels: L1, L2 & L3 Module –V	8 hours
Optimization techniques:	o nours
Linear Programming, Mathematical formulation of linear Programming	-
Linear Programming, Mathematical formulation of linear Programming Types of solutions, Graphical Method, basic feasible solution, canonical an	-
	-
Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method.	-
Types of solutions, Graphical Method, basic feasible solution, canonical an	-
Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method. RBT Levels: L1, L2 & L3	d standard forms and
 Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method. RBT Levels: L1, L2 & L3 Text books: 1 Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th 	d standard forms and
 Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method. RBT Levels: L1, L2 & L3 Text books: 1 Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th 2 Engineering Mathematics by N. P. Bali and Manish Goyal. Laxmi publications, 	d standard forms and
 Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method. RBT Levels: L1, L2 & L3 Text books: 1 Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th 	d standard forms and
 Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method. RBT Levels: L1, L2 & L3 Text books: 1 Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th 2 Engineering Mathematics by N. P. Bali and Manish Goyal. Laxmi publications, 	d standard forms and ⁿ Edition.2007 latest edition
 Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method. RBT Levels: L1, L2 & L3 Text books: 1 Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th 2 Engineering Mathematics by N. P. Bali and Manish Goyal. Laxmi publications, Reference books: 	d standard forms and ⁿ Edition.2007 latest edition
 Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method. RBT Levels: L1, L2 & L3 Text books: 1 Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th 2 Engineering Mathematics by N. P. Bali and Manish Goyal. Laxmi publications, Reference books: 1.Advanced Engineering Mathematics by E. Kreyszig, John Willey & sons 	d standard forms and ⁿ Edition.2007 latest edition s 8 th Edn.
 Types of solutions, Graphical Method, basic feasible solution, canonical an simplex method. RBT Levels: L1, L2 & L3 Text books: 1 Higher Engineering Mathematics by B.S.Grewal, Khanna publishers; 40th 2 Engineering Mathematics by N. P. Bali and Manish Goyal. Laxmi publications, Reference books: 1.Advanced Engineering Mathematics by E. Kreyszig, John Willey & sons 2.A short course in differential equations – Rainvile E.D.9th Edition. 	d standard forms and ⁿ Edition.2007 latest edition s 8 th Edn.

Course Outcomes: On completion of this course, students are able to:

- CO1: Solve the numerical problems in algebraic and transcendental equations and computation of interpolating polynomials using given data.
- CO2: Compute derivatives of the functions numerically using given data and Evaluate integrations numerically.
- CO3: Apply numerical methods to solve ordinary differential equations.

CO4: Apply the method of least square to estimate the parameters in regression model

CO5: Apply optimization techniques and LPP for real life problems.

Method of Examination:

Note:- The SEE question paper will be set for 100 marks and the marks scored by the student will be proportionately reduced to 50.

- The question paper will have **ten** full questions carrying equal marks.
- Each full question carries **20**marks.
- There will be **two** full questions (with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.

The students will have to answer **five** full questions, selecting **one** full question from each module.