I Semester

Course Title: Mathematics-I for Electrical and Electronics Engineering stream [As per Choice Based Credit System (CBCS) scheme] (From the academic year 2022-23)

Course Code	22MATE11	CIE Marks	50
Credits	04	SEE Marks	50
Course Type	Integrated		
Contact Hours/Week (L-T-P)	2-2-2	Total Marks	100
Contact Hours of Pedagogy	42 hours Theory +10 Lab slots	Exam Hours	03

Course objectives: The goal of the course **Mathematics-I for Electrical & Electronics Engineering stream**(**22MATE11**) is to

- **Familiarize** the importance of calculus associated with one variable and two variables, the importance of Integral calculus for Electrical and Electronics engineering.
- Analyze Electrical & Electronics engineering problems applying Ordinary Differential Equations.
- **Develop** the knowledge of Linear Algebra refereeing to matrices.

Module-1 Calculus

(5L+3T)

Introduction to polar coordinates and curvature relating to EC&EE engineering.

Polar coordinates, Polar curves, angle between the radius vector and the tangent, and angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Simple Problems.

Self-study: Center and circle of curvature, evolutes and involutes.

Applications: Communication signals, Manufacturing of microphones, and Image processing.

(RBT Levels: L1, L2 and L3)

Module-2 Series Expansion and Multivariable Calculus (6L+2T)

Introduction to series expansion and partial differentiation in the field of EC&EE engineering applications.

Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems.

Indeterminate forms : L-Hospital's rule, problems.

Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables – Simple Problems.

Self-study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with single constraint.

Applications: Series expansion in communication signals, Errors and approximations.

(RBT Levels: L1, L2 and L3)

Module-3 Ordinary Differential Equations (ODEs) (6L+3T)

Introduction to first-order ordinary differential equations pertaining to the applications for EC&EE engineering.

Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations

-Integrating factors on	1	∂M	∂N	and	1	∂N	∂M
	N	∂y	∂x	$\frac{1}{M}$	∂x	∂y	

Orthogonal trajectories, L-R and C-R circuits.Problems.

Importance of higher-order ordinary differential equations in EC&EE Engineering applications.

Higher-order linear ODEs with constant coefficients - Inverse differential operator, method of variation of parameters.

Self-Study: Applications of ODEs in EC&EE Engineering field. Cauchy's and Legendre's homogeneous differential equations - Problems.

Applications of ordinary differential equations: Rate of Growth or Decay,

(RBT Levels: L1, L2 and L3)

Module-4 Integral Calculus

(6L+3T)

Introduction to Integral Calculus in EC&EE Engineering applications.

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by double integral. Problems.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.

Self-Study: Volume by triple integration, Center of gravity.

Applications: Antenna and wave propagation, Calculation of optimum power in electrical circuits, field theory (**RBT Levels: L1, L2 and L3**)

Module-5 Linear Algebra

(5L+3T)

Introduction of linear algebra related to EC&EE Engineering applications.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eigenvectors, Rayleigh's power method to find the dominant Eigen value and Eigenvector.

Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications of Linear Algebra: Network Analysis, Critical point of a network system. Optimum solution.

(RBT Levels: L1, L2 and L3)

List of Laboratory experiments (2 hours/week per batch/ batch strength 15) 10 lab sessions + 1 repetition class + 1 Lab Assessment

1	2D plots for Cartesian and polar curves			
2	Finding angle between polar curves, curvature and radius of curvature of a given curve			
3	Finding partial derivatives, Jacobian and plotting the graph			
4	Applications to Maxima and Minima of two variables			
5	Solution of first-order differential equation and plotting the graphs / Solutions of Second-			
	order ordinary differential equations with initial/boundaryconditions			
6	Program to compute surface area, volume and centre of gravity			
7	Evaluation of improper integrals			
8	Numerical solution of system of linear equations, test for consistency and graphical			
	representation			
9	Solution of system of linear equations using Gauss-Seidel iteration			
10	Compute eigen values and eigenvectors and find the largest and smallest eigen value by			
	Rayleigh power method			

Suggested software's: Mathematica/MatLab/Python/Scilab

Semester End Examination (SEE):

Theory SEE will be conducted by Institute as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO 1	Apply the knowledge of calculus to solve problems related to polar curves		
CO 2	Learn the notion of partial differentiation to compute rate of change of multivariate		
	functions		
CO 3	Analyze the solution of first and higher order ordinary differential equations		
CO 4	Apply the knowledge of multiple integrals to compute area and volume.		
CO 5	Make use of matrix theory for solving for system of linear equations and compute		
	eigen values and eigen vectors. Familiarize with modern mathematical tools namely		
	MATHEMATICA/ MATLAB/ PYTHON/SCILAB		

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books

- 1. B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.

- 3. **N.P Bali and Manish Goyal**: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- 4. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw Hill Book Co., Newyork, 6th Ed., 2017.
- 5. **Gupta C.B, Sing S.R and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
- 6. **H. K. Dass and Er. Rajnish Verma:** "Higher Engineering Mathematics" S. Chand Publication, 3rd Ed., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
- 8. David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 9. **Gareth Williams:** "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6th Ed., 2017.

Web links and Video Lectures (e-Resources):

- http://nptel.ac.in/courses.php?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning

- Quizzes
- Assignments
- Seminar