Course Title: Mathematics-II for Computer Science and Engineering stream [As per Choice Based Credit System (CBCS) scheme]
(From the academic year 2022-23)

Course Code	22MATS21	CIE Marks	50
Credits	04	SEE Marks	50
Course Type	Integrated	Total Marks	100
Contact Hours/Week (L-T-P)	$2-2-2$	Exam Hours	03
Contact Hours of Pedagogy	40 hours Theory +10 or 12 Lab slots		

Course objectives: The goal of the course Mathematics-II for Computer Science and Engineering stream (22MATS21) is to

- Familiarize the importance Vector calculus.
- Learn vector spaces and linear transformations.
- Develop the knowledge of numerical methods and apply them to solve transcendental and differential equations..

Module-1 Vector Calculus

Introduction to Vector Calculus in Computer Science \& Engineering.

Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems.
Curvilinear coordinates: Scale factors, base vectors, Cylindrical polar coordinates, Spherical polar coordinates, transformation between cartesian and curvilinear systems, orthogonality. Problems.

Self-Study: Volume integral.
Applications: Conservation of laws, Electrostatics, Analysis of streamlines.
(RBT Levels: L1,L2 and L3)

Module-2 Ordinary Differential Equations of higher order

Importance of higher-order ordinary differential equations in Computer Science \& Engineering applications.

Higher-order linear ODEs with constant coefficients - Inverse differential operator, method of variation of parameters, Cauchy's and Legendre's homogeneous differential equations Problems.

Self-Study: Formulation and solution of Cantilever beam. Finding the solution by the method of undetermined coefficients.

Applications:

(RBT Levels: L1, L2 and L3)

Module-3 Vector Space and Linear Transformations

Importance of Vector Space and Linear Transformations in the field of Computer Science \& Engineering.

Vector spaces: Definition and examples, subspace, linear span, Linearly independent and dependent sets, Basis and dimension. Problems.
Linear transformations: Definition and examples, Algebra of transformations, Matrix of a linear transformation. Change of coordinates, Rank and nullity of a linear operator, rank-nullity theorem. Inner product spaces and orthogonality. Problems.

Self-study: Angles and Projections. Rotation, reflection, contraction and expansion.
Applications: Image processing, AI \& ML, Graphs and networks, computer graphics.
(RBT Levels: L1, L2 and L3)

Module-4 Numerical methods -1

Importance of numerical methods for discrete data in the field of computer science $\boldsymbol{\&}$ engineering.

Solution of algebraic and transcendental equations - Regula-Falsi and Newton-Raphson methods (only formulae). Problems.
Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and Lagrange's interpolation formula (All formulae without proof). Problems.
Numerical integration: Trapezoidal, Simpson's $(1 / 3)_{\mathrm{rd}}$ and $(3 / 8)_{\mathrm{th}}$ rules (without proof). Problems.

Self-Study: Bisection method, Lagrange's inverse Interpolation.
Applications: Estimating the approximate roots, extremum values, Area, volume, and surface area. Errors in finite precision.
(RBT Levels: L1, L2 and L3)

Module-5 Numerical methods -2

Introduction to various numerical techniques for handling Computer Science \& Engineering applications.

Numerical Solution of Ordinary Differential Equations (ODE's): Numerical solution of ordinary differential equations of first order and first degree - Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor-corrector formula (No derivations of formulae). Problems.

Self-Study: Adam-Bashforth method.
Applications: Estimating the approximate solutions of ODE.
(RBT Levels: L1, L2 and L3)
List of Laboratory experiments (2 hours/week per batch/ batch strength 15)
$\mathbf{1 0}$ lab sessions + 1 repetition class + $\mathbf{1}$ Lab Assessment

$\mathbf{1}$	Finding gradient, divergent, curl and their geometrical interpretation
$\mathbf{2}$	Verification of Green's theorem
$\mathbf{3}$	Solutions of Second-order ordinary differential equations with initial/boundary conditions
$\mathbf{4}$	Computation of basis and dimension for a vector space and Graphical representation of linear transformation
$\mathbf{5}$	Visualization in time and frequency domain of standard functions
$\mathbf{6}$	Solution of algebraic and transcendental equations by Regula-Falsi and Newton-Raphson method
$\mathbf{7}$	Interpolation/Extrapolation using Newton's forward and backward difference formula
$\mathbf{8}$	Computation of area under the curve using Trapezoidal, Simpson's (1/3)rd and (3/8)th rule
$\mathbf{9}$	Solution of ODE of first order and first degree by Taylor's series and Modified Euler's method
$\mathbf{1 0}$	Solution of ODE of first order and first degree by Runge-Kutta 4th order and Milne's predictor-corrector method

.Suggested software's: Mathematica/MatLab/Python/Scilab

Semester End Examination (SEE):

Theory SEE will be conducted by Institute as per the scheduled timetable, with common question papers for the course (duration 03 hours)

1. The question paper will have ten questions. Each question is set for 20 marks.
2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
3. The students have to answer 5 full questions, selecting one full question from each module.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO 1	Understand the applications of vector calculus refer to solenoidal, and irrotational vectors. Orthogonal curvilinear coordinates
CO 2	Analyze the solution of higher order ordinary differential equations..
CO 3	Demonstrate the idea of Linear dependence and independence of sets in the vector space and linear transformation
CO 4	Apply the knowledge of numerical methods in analysing the discrete data and solving the physical and engineering problems.
CO 5	Get familiarize with modern mathematical tools namely MATHEMATICA/ MATLAB /PYTHON/ SCILAB

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books

1. B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley \& Sons, 10th Ed., 2018.

Reference Books

1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11thEd., 2017
2. Srimanta Pal \& Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press,3rd Ed., 2016.
3. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
4. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw Hill Book Co., Newyork, 6th Ed., 2017.
5. Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
6. H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics"S. Chand Publication, 3rd Ed., 2014.
7. James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
8. David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4thEd., 2018.
9. Gareth Williams:"Linear Algebra with applications.Jones Bartlett Publishers Inc.6"t Ed., 2017.

Web links and Video Lectures (e-Resources):

- http://nptel.ac.in/courses.php?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning

- Quizzes
- Assignments
- Seminar

