

POOJYA DODDAPPA APPA COLLEGE OF ENGINEERING, KALABURAGI

Choice Based Credit System (CBCS)

Scheme of Teaching and Examination 2022 – 23

(Effective from the academic year 2021 - 22)

VII Semester B.E.Mechanical Engineering

	Course and		lg ent] He	Feaching ours/We	g æk			Exam	inatio	1	s	
Sl. No.	Cou	urse and 1rse Code	Course Title	Teachin Departm	Theory Lecture	Tutorial	Practical /Drawin a	Self	Duration in hours	SEE Marks	CIE Marks	Total Marks	Credit
1.	PC	19ME71	COMPUTER INTEGRATED MANUFACTURING	ME	4	-			03	50	50	100	4
2.	PC	19ME72	ENERGY ENGINEERING	ME	4	-			03	50	50	100	4
3.	PE	19ME73X	Elective- 3	ME	3	-			03	50	50	100	3
4.	PE	19ME74X	Elective-4	ME	3	-			03	50	50	100	3
5.	OE	190E75X	Open Elective- II	ALL	3	-			03	50	50	100	3
6.	PC	19MEL75	SIMULATION & CIM LAB	ME	-	-	2		03	50	50	100	1
7.	PC	19ME76	Seminar	ME	-	-	2		03		50	100	1
8.	PROJ	19MEP77	Project Work Phase - 1	ME	-		2		03	50	50	100	2
9.	INT	19MEIN78	Internship	(To inter	b be carr vening v VII s	ied out o vacations semester	luring th s of VI a s)	e nd	-				-
	Total 17 06 24 350 400 750 21					21							
	Note: PC: Professional core, PE: Professional Elective, OE: Open Elective, MP: Mini-project, INT: Internship.												
	Internsh and VIII s	iip: All the studen semesters.	ts admitted to III year of BE/B.Tech have to undergo manda	tory inter	nship of 4	weeks du	ring the va	cation	s of VI a	and VII s	emester	s and /c	or VII

Elective- 3

1.19ME731: QUALITY ASSURANCE AND RELIABILITY

2. 19ME732: DESIGN FOR MANUFACTURE

3. 19ME733: FINITE ELEMENT METHODS

4. 19ME734: EXPERIMENTAL STRESS ANALYSIS

5. 19ME735: NANOTECHNOLOGY

Elective-4

- 1.19ME741: ADVANCED FOUNDRY TECHNOLOGY
- 2. 19ME742: ADVANCED MATERIALS TECHNOLOGY
- 3. 19ME743: ALTERNATIVE FUELS
- 4. 19ME744: CRYOGENIC
- 5. 19ME745: MECHATRONICS

Open Elective- II

1.190E751M: NON-CONVENTIONAL ENERGY SOURCES

POOJYA DODDAPPA APPA COLLEGE OF ENGINEERING, KALABURAGI

Choice Based Credit System (CBCS)

Scheme of Teaching and Examination 2022 – 22

(Effective from the academic year 2021 - 22)

VIII Semester B.E.Mechanical Engineering Teaching Hours/Week Examination Department Teaching Credits **Course and** /Drawing in hours Theory Lecture Duration **Course Title** SI. No. Course Code Practical Tutorial Marks Marks Marks Total SEE GE 1. PC 19ME81 **PROJECT MANAGEMENT** 4 03 ME --50 50 100 4 -2. ΡE 19ME82X Professional Elective- 5 ME 3 03 50 50 100 3 ---3. OE 190E83X **Open Elective- III** ALL 3 03 50 50 3 100 ----4. MOOC 19ME8NTPEC Certification Course 1 -------------------5. 8 PROJ 19MEP84 Project Work Phase - 2 ME 4 03 50 50 100 (Completed during the intervening vacations of VI 6. Internship 2 INT 19MEIN78 ----and VII semesters and /or VII and VIII semesters.) Total 10 04 12 200 200 400 21 _

Note: PC: Professional core, PE: Professional Elective, OE: Open Elective, MP: Mini-project, INT: Internship.

Internship: All the students admitted to III year of BE/B.Tech have to undergo mandatory internship of 4 weeks during the vacations of VI and VII semesters and /or VII and VIII semesters.

Elective- 5

1.19ME821: REPID PROTOTYPING AND MODELLING

- 2. 19ME822: FLEXIBLE MANUFACTURING SYSTEMS
- 3. 19ME823: VEHICLE DYNAMICS
- 4. 19ME824: COMPUTIONAL FLUID DYNAMICS
- 5. 19ME825: MICRO ELECTRO-MECHAICAL SYSTEMS (MEMS)

Open Elective- III

1.190E831: TOTAL QUALITY MANAGEMENT

COMPUTER INTEGRATED MANUFACTURING(CIM)				
Subject Code	19ME71	Credits	04	CIE:
Number of Lecture Hours/Week	4 (Theory)			SEE: 50
Total Number of Lecture Hours	52			SEE Hours: 03
 Course Objectives: To impart knowledge of CIM and analysis. To make students to understand the CNC Machine and its Tools, CNC part programming. To expose students to Transfer mechanisms and automated flow lines. To expose students to Material handling and storage systems. To introduce the students to the concepts of computerized manufacturing planning and quality control 				
	Modules			Teachi ng Hours
COMPUTER INTEGRATED MANUFAC Introduction of CIM, CIM hardware Product development cycle, Sequ prototyping. FINITE ELEMENTAL MODELING AND Introduction ,General steps involve simple numerical problems.	TURING: and software, Role of ential and concurrent ANALYSIS IN CIM: d in FEM, Types of an	of the Elements on nt engineering, S nalysis, element a	of CIM system, soft and hard nd load types,	10 Hours
	Module –II			
 COMPUTER NUMERICAL CONTROL: Basic components of NC , Concepts of CNC , DNC, machining centers and their advantages. CNC tooling- turning tool geometry ,milling tooling system, tool presetting, work holding devices CNC PROGRAMMING: Steps involved in development of a part program, Manual part programming for turning, milling and drilling operations. 				11 Hours
	Module –III			
Work part transport - continuous, Intermittent ,synchronous .Transfer mechanisms -linear- Walking beam, roller ,Chain drive, Rotary -Rack and pinion, ratchet and pawl, Geneva wheel. buffer storage, control functions. ANALYSIS OF AUTOMATED FLOW LINE: General terminology and analysis, Analysis of transfer line without storage, upper bound approach, lower bound approach, analysis of transfer lines with storage buffers and simple problems.				11 Hours
Module –IV				
AUTOMATED MATERIAL HANDLING of metal handling equipment, Materi automated guided vehicle system, a systems, Work in process storage.	AND STORAGE: Mate al handling analysis, De automated storage/ re	rial handling funct esign of system, co trieval systems, ca	ions, overview nveyor system, arousel storage	10 Hours

COMPLITERIZE	Module –V						
Computer-aid	ed process planning: retrieval and generative type, material requirement						
planning Car	and generative type, material requirement						
plaining, Cap	apacity planning, Group technology, part farming, parts classification and country						
COMPUTER AIDED QUALITY CONTROL:							
inspection me	nspection methods , non contact inspection methods, machine vision system , optical						
inspection r	inspection method, coordinate measuring machine, computer aided testing.						
Question j	paper pattern:						
1. Total of Ten	Questions with two from each MODULE to be set covering the entire syllabus.						
2. Five full que	estions are to be answered choosing at least one from each MODULE.						
3. Each question	on should not have more than 4 sub divisions.						
Text book	s:						
1 Automation, Production Systems and Computer-Integrated Manufacturing. Mikell P Groover							
4th Edition,2	015.						
2 CAD / CAN	M Principles and Applications P N Rao Tata McGraw-Hill 3rd Edition, 201	5.					
3 CAD/CAN	1/CIM Dr. P. Radhakrishnan New Age International Publishers, New D	Delhi. 3rd					
edition							
Reference	Books:						
1. CAD/CAM	-zimmers & grover-PHL						
2. CAD/CAM	2. CAD/CAM zeild-Mc-Graw Hill-2005.						
E books an	nd online course materials:						
At the end of	f the course students will be able to:						
CO	Course Outcomes						
CO1	Discuss the role of CIM in manufacturing and analysis.						
CO2	Explain the concept of CNC and able to prepare part programs for simple	jobs.					
СОЗ	Discuss various transfer mechanisms and analysis of automated flow line	's					
	-						
CO4	Recognize various material handling, storage systems.						
CO5	Understand the modern trends in manufacturing like CAPP, GT and CAQC.						

ENERGY ENGINEERING				
Subject Code	19ME72	Credits	04	CIE:
Number of Lecture Hours/Week	4 (Theory)			SEE: 50
Total Number of Lecture Hours	52			SEE Hours: 03
Prerequisite : The Energy Engineeri	ng major interweave	s the fundamentals	of classical and	
modern physics, chemistry, and mathematics with energy engineering applications.				
 Course Objectives: To Define and understand steam power plant machinery and process. To Understand the functioning of boiler accessories, natural, forced and balanced draft systems. To Understand the diesel engine power plant, accessories and layout. To Define and understand the cogeneration, hydroelectric, gas turbine power plants, accessories and layouts 				
5. To Define and understand nucle disposal of nuclear waste.	ear power plant fu	ndamentals, nuclea	r fuels-use and	
6. To Understand and analyze the po	ower plant economics	s as well as performa	ance.	T
	Modules			ng Hours
	Module –I			
Steam Power Plant:Layout of steam power plant, differedof burning (overfeed and underfecttangential, cyclone burners), unit servicenumericals).Coal, Ash Handling and Different TypeCoal and Ash handling, Generation ofpressures, A brief account of LaMonumericals).	ent types of fuels use eed stokers), Burne ystem and bin syst Des of Boilers: of steam using force unt, Benson, Velox,	ed for steam genera ers (long flame, tu em. Pulverised fue ed circulation, high a and Loeffer steam	tion, Equipment urbulent flame, el furnaces (No and supercritical generators (No	10 Hours
	Module –II			
Chimneys: Types of chimneys (Nat involving height of chimney to produ Accessories for the Steam Generate different types of cooling towers an super-heaters, de-super heater, Re h (No numericals).	ural, forced, induce ce a given draft (Nun or Cooling Towers a id ponds. Accessorie eaters, Economizers	d and balanced dra nerical). nd Ponds: Air Pre-h es for the Steam Ge	oft) Calculations neaters Study of nerator such as	10 Hours
Module –III				
Diesel Engine Power Plant: Layout of a diesel power plant. Method of starting diesel engines, cooling and lubrication system for the diesel engine. Filters, centrifuges, Oil heaters, Intake and exhaust system. Advantages and disadvantages of the diesel power plant. (No numericals)				
Nuclear Power Plant: Principles of release of nuclear ener reactors. Radiation hazards, Shieldin types (PWR, BWR, HGR,GCR, LMCR numericals).	gy fusion & fission i gs, Radio active was , Fast Breeder react	reactions. Nuclear fu te disposal, Nuclear tor) Site selection c	uels used in the reactors and its riteria area.(No	10 Hours

	Module –IV				
Hydro-Electric	e Plants:				
Storage and p head plants, p power house, in India (Nume	bondage, flow duration and mass curves, hydrographs, Low, medium and high bumped storage plants, Penstock, water hammer, surge tanks, gates and valves, general layout. A brief description of some of the important Hydel Installations perical).	11			
Gas Turbine closed cycle t compression cooling) (No n	Power Plant: Advantages & Disadvantages of the gas turbine plant, Open & curbine plants with the accessories. Multi stage expansion and multi stage Different methods of improving efficiency (Reheat regeneration and inter umericals)	Hours			
	Module –V				
 Choice of Site for Power Station: Load estimation, load duration curve, load factor, capacity factor, use factor, diversity factor, demand factor, Effect of variable load on power plant, selection of the number and size of units (Numerical). Economic Analysis of Power Plant: Cost of energy production, selection of plant and generating equipment, performance and operating characteristics of power plants, tariffs for electrical energy (Numerical). 					
Question	Question paper pattern:				
2. Five full gu	octions are to be answered choosing at least one from each MODULE.				
2. Five full que	on should not have more than 4 sub divisions				
Text hooks:					
1. Power	plant Engineering. P.K Nag. Tata Mc Graw	Hill.			
2. Power Plan	t Engineering, Er.R K Rajput Laxmi Publications (P) Ltd. New Delhi.				
3. Power Plan	t Engineering, G.R.Nagpal, Khanna Publishers, 2006				
Reference	Books:				
1.Power	plant Engineering, F.T Morse, Van	Nostrand.			
2. Power Plan	t Engineering, Dhomakundawar, Dhanpath Rai sons. 2003				
3. Power Plan	t Technology, M.M.Wakil, Tata Mc Graw Hill Publishers, 2nd Edition				
E books a	nd online course materials:				
At the end of the course students will be able to:					
CO	CO Course Outcomes				
CO1	O1 Identify and choose the various components needed for a steam power plant.				
CO2	Interpret the various accessories and auxiliaries for steam power plants.				
СОЗ	Choose the diesel engine and nuclear power plant fundamentals required for the geographical area.				
C04	Analyze power plant layout for a hydroelectric and gas turbine power plan	ıt.			
C05	Predict the usage of base load and peak load plant and analyze, Interpret the power plant economics and recommend solutions.				

Elective-3
QUALITY ASSURANCE AND RELIABILITY

QUALITY	ASSUKANCE	L AND KEL		
Subject Code	19ME731	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of Lecture Hours		SEE Hours: 03		
Prerequisite: Student shou	ld have knowled	ge of Industri	ial management,	
Statistics and probability, reliability	/.	5	0 ,	
Course Objectives:				
 To learn the fundamentals of Qu To have knowledge the quality world problems related to industry Learn to achieve reliability with a 				
	Modules			Teaching Hours
	MODULE-I			
 Basic Concepts of Quality: Definition of Quality, Factors of quality, Quality of Design, Quality of conformance, Quality of performance. Objectives of quality control and its characteristics. Statistical Quality Control and Cost of Quality: Introduction to Statistical Quality control (SQC), types and its benefits. Cost of quality Categories, optimum cost of performance, Economics of quality design, specification of quality. 			08 Hours	
	MODULE-II			
Concepts in Probability : Events, Sample space, Laws Multiplication law of probability an Probability Distributions: Discrete and Continuous Distribut Normal Distributions , Weibull Dist	of probability nd law of Condition ions, Binomial Dis ribution, Numerica	(Addition law nal probability) tributions, Pois II.	of probability, Numerical. son Distributions,	09 Hours
	MODULE-III			
Statistical Aspects and Control Charts: Statistical Tools in Quality control Control charts for Variable, Procedure, Interpretation and analysis using X-chats, R- Charts, Process capacity estimation, and Process improvement. Numerical Control Charts for Attributes: Practical limitation of the control charts for variables, Definition of fraction defective(p), Comparison of X and R charts with P-chart, control limits (3σ limits) on p Chart, Choice between p- chart and np-chart. Numerical.			09 Hours	

	MODULE-IV						
Reliability:							
Definition, basic	e elements and Achievements, Methods for improving Design						
Reliability and to	Cenability and tests. 08 Hours						
Failure Data A	nalysis: Failure data, MTTF, MTBF, Bathtub curve, Mean life, life						
Testing, Introduc	tion to failure Mode and effect Analysis. Numerical.						
Sugton Daliabi	MODULE-V						
Probability of su	ny: rvival of series system and narallel redundant system Numerical.						
Maintainability	and availability:						
Maintainability	Engineering, Designing for Maintainability, Maintainability						
Assurance, Ava	ilability, Equipment Availability, MTBF and MTTF trade-off,	08 Hours					
Numerical.							
Question pape	r pattern:						
1. Total of Ten Q	uestions with two from each MODULE to be set covering the entire syl	abus.					
2. Five full quest	ions are to be answered choosing at least one from each MODULE.						
3. Each question	should not have more than 4 sub divisions.						
Text books:							
1. Halpern, Seig	mund (1978), The Assurances Sciences, Prentice Hall International,						
New Jersy, USA	2015) Statistical Quality Control						
3. Juran, I.M and	d Gryna, F. M (1982), Quality planning and Analysis Tata Mc Grawl	Hill Publishing					
Company Ltd, N	ew Delhi, India	6					
Reference B	ooks:						
1 Balachandra,	Benjamin S (1986), Logistics Engineering and Management prentice						
Hall Internat	tional, New Jersey, USA						
2 Kraus, John Engineering	w (1988), Maintainability and Reliability Hand Book of Reliability and Management Editors – Ireson W.G. and Cooms, CE McGraw bill						
Books Comp	and Management, Editors – reson .w.d. and cooms. or McGraw him pany Inc. USA						
3. Srinathm KS	(1985), Concepts in Reliability Engineering Affiliated East West						
Press Privat	e Limited, New Delhi, India.						
E DOOKS and	online course materials:						
Course outc	omes:						
On complet	ion of the course, the student will have the ability	to:					
CO	CO Course Outcome (CO)						
C01	Knowledge of production processes and assurance Science of quality products						
CO2	2 Implement Laws of probability and Probability Distributions						
CO3	CO3 Interpret and represent the control charts according to the Specified specialization that meet the requirements.						
C04	Apply and analyze the appropriate technique of Reliability to und impact of applications in the industry.	lerstand the					
C05	Evaluate of system Reliability and illustrate Maintainability Engineer	ing.					

DESIGN FOR MANUFACTURING					
Subject Code	19ME732	Credits	03	CIE: 50	
Number of Lecture Hours/Week	3 (Theory)	SEE: 50			
Total Number of Lecture Hours	42			SEE Hours: 03	
Prerequisite:					
Course Objectives:					
 1.To educate students on factors to be considered in designing parts and components with focus on manufacturability. 2.To expose the students to dimensional tolerances, geometric tolerances and true position tolerance techniques in manufacture. 3.To impart the knowledge on design considerations for designing components produced using various machining operations like turning, drilling, milling, grinding etc. 					
casting, welding, forgin	igs powder metallurgy	and injection mould	ling.		
	Modu	les	0	Teaching Hours	
	MODU	LE-I			
Introduction: Definition design guide lines of Design for Quality Mar production. Design for Basics of dimensional relationship between a Geometrical tolerance process capability indice and truncated normal l	on, need for DFM an DFM, advantages, on nufacturability, DFQM Excellence (DFX). tolerancing, Redur attainable tolerance g es. Process capability ces- Cp, and Cpk. Cur aw with Numerical.	d approach for cost disadvantages and a l approach and desig ndancy, tolerance al rades and different n y, mean, variance, nulative effect of tol	t reduction, general application of DFM. gning for economical location, Review of machining processes. skewness, kurtosis, lerance- Sure fit law	08 Hours	
	MODU	LE-II			
True positional theory: Comparison between coordinate and true position method of feature location. True position tolerance- virtual size concept, concepts of datum and changing datum, floating and fixed fasteners, projected tolerance zone and functional gauges. Concept of Zero true position tolerance. Simple Numerical on true position tolerancing. Selective Assembly: Interchangeable part manufacture and selective assembly. Deciding the number of groups -model-1: group tolerance of mating parts equal, model- 2: total and group tolerances of shaft equal. Control of axial play- introducing secondary machining operations, and laminated shims; examples.				09 Hours	
Dotum Footures France	MODUI	E-III	honging the deture		
Datum Features: Functional datum, datum for manufacturing, changing the datum; examples. Component Design: Design features to facilitate machining: drills, milling cutters, keyways, Doweling procedures, counter sunk screws, Reduction of machined area, simplification by separation, simplification by amalgamation, Design for machinability, economy, clampability, and accessibility. Designing for heat treatment, roller burnishing, and economical de-burring.					

MODULE-IVDesign of components with casting considerations: Pattern, mould, and parting line. Cored holes and machined holes. Identifying the possible and probable parting lines. Castings requiring special sand cores. Designing to obviate sand cores.09 HoursWelding considerations: Advantages of weldments over other design concepts, design requirements and rules, redesign of components for welding; case studies.09 Hours					
	MODULE-V				
Forging considerations -requirements and rules-redesign of components for forging and case studies.					
Design of	f components for powder metallurgy- requirements and rules-case studies.	08 Hours			
Design o	f components for injection moulding- requirements and rules-case studies.				
Questi 1. Total o 2. Five fu 3. Each qu	Question paper pattern: 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus. 2. Five full questions are to be answered choosing at least one from each MODULE. 3. Each question should not have more than 4 sub divisions.				
Text b	ooks:				
 Design Engine Handb James G I 	 Designing for Manufacture Peck H Pitman Publications 1983 Engineering Design: A Materials and processing Approach Dieter, G.E. McGraw Hill Co.Ltd 2000 Handbook of Products Design for Manufacturing: A Practical Guide to Low-cost Production Bralla, James G McGraw Hill. New York 1986. 				
Refere	Reference Books:				
1 Enginee 2. Engine 3. Proces 1990	 Engineering Design Eggert, R.J Pearson Education, Inc., New Jersey 2005 Engineering Design for Manufacture Kalandar Saheb, S.D and Prabhakar, O. SPE,1999 Processes and Materials of Manufacture Linberg, Roy A. Allyn and Bacon, Boston, U.S.A. 4 th ed., 1990 				
E book	s and online course materials:				
CO	Course Outcomes				
CO 1	CO1 Select proper materials and manufacturing processes for designing products/components by applying the relevant principles for ease and economic production.				
CO2	12 Identify faulty design factors leading to increased costs in producing mechanical components.				
СОЗ	Apply appropriate design tolerances – dimensional, geometric and true posi tolerances for the production processes of mechanical components.	tion			
CO4	Apply the concepts related to reducing machined areas, simplification by am and separation, clampability, accessibility etc., in the design of mechanical c	algamation omponents.			
CO5	Analyse the design of castings, weldments, forgings, powder metallurgy components and suggest design modifications to reduce the cost.				

FINITE ELEMENT METHODS				
Subject Code	19ME733 Cr	redits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of Lecture Hours	42			SEE Hours: 03
Prerequisite: Show	Ild have knowledge of phy	sics, mechani	cs, strength of	
materials, linear algeb	ra, mechanical properties of	of materials.		
Course Objectives:				
The course aims to pro	vide an introductory appr	oach to finite	element method as a	
basic numerical tool fo	solving mechanical engin	eering proble	ms.	Taaahing
	Modules			Hours
	MODULE-I			
INTRODUCTION TO FE Applications, Steps in (1D,2D,3D), size of the Method of solution of Numerical integration Basic elastic equation relations. Principle of the functional for a 3D elastic stress-strain relations.	VI: Need, Advantages and volved in FEM, Discretiza e elements, location of f linear algebraic equati by Gaussian quadrature (as – body force and to ninimum potential energy stic body, concept of plan	disadvantage tion process nodes, node ons – Gauss one point an raction force and derivation the stress and	es of FEM, Engineering – types of elements e numbering scheme, elimination method. d two point formula). f, strain-displacement on of potential energy plane strain and their	10 Hours
	MODULE-II			
INTERPOLATION MOI displacement function, 2D polynomial, Differe functions for 1D linea element in cartesian Shape functions for quadrilateral element parametric elements, C	DELS: Displacement funct convergence criteria, geor nt co-ordinate systems us and quadratic bar eleme and natural co-ordinate linear quadrilateral ele (9-noded), Iso-parame oncept of Jacobian matrix,	tion, selection metric isotrop sed in FEM, I ents and 2D systems. Lag ement (QUA etric, subpar Jacobian ma	on of the order of by, Pascal's triangle for nterpolation or shape linear triangular (CST) rangian polynomial – D 4) and quadratic rametric and super- trix for CST.	08 Hours
	MODULE-III			
ELEMENT STIFFNESS Stiffness matrix and I element. Assembly of stiffness matrix, Trea methods. Analysis of a	MATRIX AND LOAD VECT bad vector for linear and elements by direct stiffnes tment of boundary con tially loaded uniformly tap	FORS: Strain d quadratic l s method, sp ditions- elin ered and step	displacement matrix, bar element and CST ecial characteristics of nination and penalty ped bars.	08 Hours
	MODULE-IV			
ANALYSIS OF PLANE	RUSSES AND BEAMS: Lo	cal and globa	al coordinate systems,	
function for beam elem	ne truss element, analysis	or truss me	muers. Hermite shape	00.11
for beam element, element shear force and bending moment, analysis of beams.				08 Hours
	MODULE-V	<u> </u>	,	
ANALYSIS OF HEAT T conduction- governing Galerkin's approach to transfer in thin finsFor problems on composite	RANSFER PROBLEMS: Ste equation, boundary con b heat conduction, heat mulation of equations. Sir e walls and fins with condu	eady state he ditions, one- flux boundar nple numeric ction and con	eat transfer, 1D heat dimensional element, ry condition. 1D heat ral of 1D heat transfer avection.	08Hours

Questio	n pape	er pattern:				
1. Total	of Ten	Questions with two from each MODULE to be set covering the entire				
syllabus.	syllabus.					
2. Five fu	2. Five full questions are to be answered choosing at least one from each MODULE.					
3. Each qu	lestion s	should not have more than 4 sub divisions.				
Text bo	oks:					
1 Chandral	kanth S D	Desai and J.F. Abel, "Introduction to the Finite Element Method,"				
CBS, 1st e	edition, 2	2005, ISBN: 978-8123908953.				
2 I R Chan	drupatia	and A D Belegundu, "Introduction to Finite Elements in				
2 Singirosu	ing, Pea	The Finite Element Method in angineering "Element Publisher				
5 Singiresu	ו א הא כיו מר מר	ISBN: 078-0380031555				
Juncania	511, 2000	15DN. 578 5586551555.				
Referen	ce Boo	oks:				
1 O.C.Zien	kiewicz, '	'The FEM its basics and fundamentals." Elsevier Publisher, 6th				
edition, 2	2007, ISB	N: 978-8131211182.				
2 J.N.Redd	y, "Finite	e Element Method," McGraw Hill International Edition, 2005,				
ISBN: 978	3007246	6850.				
3 Daryl. L.	Logon, "I	Finite Element Methods," Thomson Learning 5th edition, 1st Jan				
2011, ISB	BN: 978-0	495668251.				
4 David V.	Hutton, '	"Fundamentals of Finite Element Analysis," Tata McGraw Hill				
Publishin	g Co. Ltd	l, New Delhi, 10th June 2005, ISBN: 978-0070601222.				
E books	and o	online course materials:				
Course	outcor	mes:				
On com	pletio	n of the course, the student will have the ability to:				
0						
Course		Course Outcome (CO)				
Code	#	Understand the basic concents and mathematical proliminaries of FEM required				
	CO1	to solve basic field, problems				
	000	Develop interpolation models for 1D and 2D elements that satisfy convergence				
	02	criteria and geometric isotropy and use isoparametric concept in the finite				
		Formulate element stiffness matrices and lead vectors for different elements				
	CO3	using variational principle and analyze avially loaded bars				
		Use finite element formulations in the determination of stresses strains and				
	CO4	reactions of trusses and transversely loaded beams.				
		Formulate finite element equations for heat transfer problems using Veriational				
	C05	and Galerkin techniques and apply these models to applyze conduction and				
		convection heat transfer problems				
		convection inclutional problems.				

EXPERIMENTAL STRESS ANALYSIS				
Subject Code	19ME734	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of	42			SEE
Lecture Hours				Hours: 03
Prerequisite: Stud	ent should have the basic kno	owledge of physic	s and behavior	
of materials.				
1. To use the method of behavior of solid bodies	es: of electrical strain gauges to s. ment and perform stress stra	study and charac	terize the elastic	
 a. To incusure displace using electrical resistan 3. To describe the phot of solid bodies. 4. To determine stress 	ice strain gauges. To elastic method to study and strain behavior of solid bodies	d characterize the s using methods o	e elastic behavior	
5. To conduct stress str	ain analysis of solid bodies us	ing the methods	Holography	
	Modules			Teaching Hours
	MODULE-I			
generalized measurement system. Basic concepts in dynamic measurements, system response, distortion, impedance matching, Analysis of experimental data, cause and types of experimental errors. General consideration in data analysis. Electrical Resistance Strain Gages: Strain sensitivity in metallic alloys, Gage construction, Adhesives and mounting techniques, Gage sensitivity and gage factor, Performance Characteristics, Environmental effects, Strain Gage circuits. Potentiometer, Whetstone's bridges, Constant current circuits.			08 Hours	
Strain Analysis Matha	NODULE-II	nt roctongular ar	ad dalta recettor	
Strain Analysis Methods: Two element, three element rectangular and delta rosettes, Correction for transverse strain effects, Stress gage, Plane shear gauge, stress intensity factor. Force, Torque and strain measurements: Mass balance measurement, Elastic element for force measurements torque measurement				08 Hours
	MODULE-III			
 Photoelasticity: Nature of light, Wave theory of light - optical interference, Stress optic law – effect of stressed model in plane and circular polariscopes, Isoclinic's & Isochromatics, Fringe order determination Fringe multiplication techniques , Calibration photoelastic model materials. Two Dimensional Photoelasticity: Separation methods: Shear difference method, Analytical separation methods, Model to prototype scaling, Properties of 2D photoelastic model materials for 2D photoelasticity. 			08 Hours	
Three Dimensional I photoelasticity, Scatter polariscope and stress o Photoelastic (Birefring thickness: Reinforcing incidence.	MODULE-I Photo elasticity: Stress fro- red light as an interior analy data Analyses. ent) Coatings: Birefringence effects, Poisson's, Stress	V eezing method, vzer and polarize coating stresses, separation tech	Scattered light r, Scattered light Effects of coating miques: Oblique	10 Hours

			P				
		MODULE-V					
Brittle	Brittle Coatings: Coatings stresses, Crack patterns, Refrigeration techniques, Load						
relaxation techniques, Crack detection methods, Types of brittle coatings, Calibration							
of coa	ating. Ac	lvantages and brittle coating applications.	08 Hours				
Moire	e Meth	ods: Moire fringes produced by mechanical interference .Geometrical					
approach, Displacement field approach to Moire fringe analysis, Out of plane							
displa	acement	measurements, Out of plane slope measurements .Applications and					
advan	ntages.						
Que	stion	paper pattern:					
1. Tot	al of Te	n Questions with two from each MODULE to be set covering the entire syll.	abus.				
2. Five	e full qu	estions are to be answered choosing at least one from each MODULE.					
3. Eac	h quest	ion should not have more than 4 sub divisions.					
Text	t bool	IS:					
1. Exp	perimen	tal Stress Analysis, Dally and Riley, McGraw Hill.					
2. Exp	perimen	tal Stress Analysis, Sadhu Singh, Khanna publisher.					
3. Exp	perimen	tal stress Analysis, Srinath L.S TaTa Mc Graw Hill.					
Refe	erence	e Books:					
1. Pho	otoelast	icity Vol I and Vol II, M.M.Frocht, John Wiley & sons.					
2. Stra	ain Gau	ge Primer, Perry and Lissner,					
3. Pho	oto Elasi	ic Stress Analysis, Kuske, Albrecht & Robertson John Wiley & Sons.					
4. Mo	tion Me	asurement and Stress Analysis, Dave and Adams,					
5. Hol	lman, Ex	<pre>cperimental Methods for Engineers, Tata McGraw-Hill Companies, 7th Editi</pre>	on, New York,				
2007.							
6. B.	C. Nakr	a and K. K. Chaudhry, Instrumentation, Measurement and Analysis, Tata	a McGraw-Hill				
Comp	oanies, l	nc, New York, 7th Edition, 2006.					
E bo	ooks a	nd online course materials:					
Cou	rse o	atcomes: On completion of the course, the student	will have				
the	ability	y to:					
	CO	Course Outcome (CO)					
	CO1	Impart basic knowledge of the elastic behavior of solid bodies					
F	CO2	Ability to understand the stress and strain gauges.					

CO3 Apply photo-elastic methods in whole field stress analysis of solids

CO4 Discuss experimental investigations by predictions by other methods.

CO5 Describe various coating techniques

NANOTECHNOLOGY				
Subject Code	19ME735	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of Lecture Hours	42			SEE Hours: 03
Prerequisite: Mate	erial science.			
Course Objectives In this course student materials, and their eng	s: s will learn about the basing gineering applications and ha	cs of nanoscale s zards.	cience, types of	
	Modules			Teaching Hours
	MODULE-I			
INTRODUCTION TO NANOSCIENCE AND NANOTECHNOLOGY: History, background and interdisciplinary nature of nano-science and nanotechnology, challenges of Rechard Feynman, scientific revolutions. Nano-size effect on surface to volume ratio. Atomic structure, Bohr atomic model, molecules and phases. Introduction to classical physics and quantum mechanics and importance of nanoscale materials and their devices.			08 Hours	
MODULE-II				
CLASSIFICATION OF NANOSTRUCTURES : Zero dimensional, one-dimensional and two dimensional nanostructure materials - classification of solids: conductor, semiconductors, insulator, types of semiconductor, doping, diodes, current flow in semiconductors, ceramics and nanocomposites, quantum size effect(QSE) in 1D, 2D, 3D nanomaterials, quantum dots, nanowires, nanotubes, nanosheets, top down and bottom up approach.			08 Hours	
MODULE-III				
 BIOMIMETICS AND BIOMATERIALS: Biomimetics: Introduction, Industrial significance, Lessons from nature and applications, overview of various objects from nature and their selected functions, Lotus effect, Velcro effect, biologically inspired mechanisms, Biologically inspired structures and tools, biological materials. Biomaterials: Introduction, Classification of Biomaterials, Biomaterials as implant in human body, characterization of biomaterials. 			08 Hours	
MODULE-IV				
INTRODUCTION TO NA nanoparticles eg Au, nanoparticles TiO2, Zn sensors, Semiconductin based nanomaterials a Silicon based nanostru as tips for AFM and Fie and their application.	ANOMATERIALS AND DEVIC Ag, Cu, Pt and their ap O, SnO2 and their application ng Cadmium and Selenide q nd their applications in FETs, ctures and their application eld emission microscopy, mag	ES: Types of nano oplication as FET on in solar cells, N uantum dots bio MOSFETS, sensor in single electron gnetic and ceramic	materials: Metal rs. Metal oxide MEMS based gas imaging, Carbon s and actuators, electronics used cs nanomaterials	10 Hours

MODULE-V	
INTRODUCTION TO NANOTOXICOLOGY: Nanomaterials pollution – Nanomaterials in	
Environment - Toxicology of Airborne – Effect of Nanomaterials in the environment.	
Safety and pollution Control techniques-handling, storage, packaging, transportation	08 Hours
and disposal.	
Question paper pattern:	
1 Total of Tan Questions with two from each MODILLE to be set covering the entire sull	abuc

Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
 Five full questions are to be answered choosing at least one from each MODULE.

3. Each question should not have more than 4 sub divisions.

Text books:

1. Edward L. Wolf, "Nanophysics and Nanotechnology - An Introduction to Modern Concepts in Nanoscience" Second Edition, John Wiley & Sons, 2006.

2. Foundations of Nanoscale Science and Technology, Shareefraza J. Ukkund, Prasad Puthiyillam, LAP-Lambert Academic Publishing, Mauritius, 2018. ISBN: 978-613-958649-3 Nanotechnology – Basic Science & Emerging Technologies: 2002 by Michael Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, and Burkhard Raguse.

3. Nanoparticles technology: Masuo Hosokawa, Kiyoshi Nogi, Makio Naito, Toyokazu Yokoyama, First edition 2007, ISBN: 978-0-444-53122-3.

Reference Books:

1. Vladimir P. Torchilin (2006) Nanoparticulates as Drug Carriers, Imperial College Press.

2. M. Reza Mozafari (2007) Nanomaterials and Nanosystems for Biomedical Applications.

3. K.W. Kolasinski, "Surface Science: Foundations of Catalysis and Nanoscience", Wiley, 2002.

4. Biomimetics: lessons from nature – an overview by Bharath bhushan

5. Biomimetics—using nature to inspire human innovation Yoseph Bar-Cohen.

E books and online course materials:

Course outcomes: On completion of the course, the student will have the ability to:

СО	Course Outcome (CO)
CO1	Describe fundamentals of nanoscience and nanotechnology
CO2	Classify nano-structures;
CO3	Develop smart materials
CO4	Analyse biomaterials
CO5	Explain nanotoxicology

Elective-4 ADVANCED FOUNDRY TECHNOLOGY				
Subject Code	19ME741	Credits	03	CIE: 50
Number of Lecture Hours/Week	SEE: 50			
Total Number of Lecture Hours	42			SEE Hours: 03
Prerequisite: Ma	anufacturing process	and materials science	e knowledge, basic	
Course Objectives:				
 To promote understanding of foundry practice and metal casting as one of the important manufacturing processes. To study the various techniques used in foundry industries and their applications. Understand the standard foundry practices for casting of ferrous and non-ferrous alloys elaborated according to specialization. An overview of the designing of molds, casting defects, inspection and testing of 				
Modules				Teaching
				Hours
Introduction of foundry: History, Types of Manufacturing process, principles of foundry, Types of foundries, Different sections of foundry and its layout. Foundry materials: Types of raw materials. Introduction and Technology of Pattern making: Definition, pattern materials, types of patterns, pattern allowances.			08 Hours	
MODULE-II				
Technology of Mould making: Mould materials, sand preparation, Properties f moulding materials, steps involved in sand mould making, Core and core prints. Green sand moulding, dry sand moulding, shell moulding, Sodium silicate molding, no-bake moulding, Plaster moulding, Vacuum sealed moulding(V process).				08 Hours
Melting and Pouring	MODU	JLE-III ng furnaces- onen he	arth h furnace	
Acidic and basic hearth furnaces. Metal Pouring: Pouring temperatures, pouring equipment, pouring ladles, Gates, Risers, Chvorinov's rule, risers feeding distance, sprues and their characteristics. Solidification of castings: Concept of solidification of metal, solidification of pure metals- nucleation, heterogeneous-nucleation, solidification rate, time and Chvorinov's rule- progressive, directional solidification and control of solidification to obtain sound castings.				09 Hours
	М	ODULE-IV		
Special casting Techniq pressure die casting, ce advantages, disadvanta Inspection and testing ultrasonic testing.	ues: Introduction-Special cas entrifugal casting, Squeez ages and applications. g: Non-destructive test	ting techniques-Permanen e casting, comparison w ing, visual testing, liqui	t mould casting, rith sand casting, id penetrate,	08 Hours

	MODULE-V						
Fettling te	ettling technique: Introduction of shake out, modern developments, Fettling or						
cleaning, a	eaning, and finishing of castings, removal of cores, cleaning casting surfaces, blast						
cleaning, i	removal of gates, risers, fins and other unwanted projections from castings.	09 Hours					
Casting D hot tears,	efects: causes and remedial measures, porosity, Shrinkage cavity, inclusions, rat tail, sand fusion, mis- run, cold shut, Fins.						
Questi	on paper pattern:						
1. Total c	f Ten Questions with two from each MODULE to be set covering the entire syllabu	S.					
2. Five fu	Il questions are to be answered choosing at least one from each MODULE.						
3. Each q	uestion should not have more than 4 sub divisions.						
Text b	ooks:						
1. O.P. Kł	nanna, <i>"A Text Book of Foundry Technology"</i> , Dhanpat Rai & Sons, 15 th Edition, 202	11.					
2. P.N. Ra	ao, "Manufacturing Technology", TMH, 5 th Edition, 2013.						
Refere	nce Books:						
1. Richar	d. W. Heine and Rosenthal, "Principles of Metal Castings", TMH, 2 nd Edition, 2001.						
2. R.K. Ja	in, "Production Technology", Khanna Publishers, 17 th Edition, 2011.						
F hool	ra and anling agurag materials.						
E DOOR	is and omme course materials:						
Course	e outcomes: On completion of the course, the student will	l have the					
ability	to:						
со	Course Outcomes						
CO1	Detect the material to prepare patterns and moulds						
CO2	Explain sand preparation, reclamation, control tests and various types of r	noulding					
CO3	Design gating systems and calculate solidification time.						
CO4	Select melting furnaces and ladles, non-destructive methods used in castir	ngs					

Identify defects, salvage and heat treatment of castings

CO4

CO5

ADVANCED MATERIALS TECHNOLOGY				
Subject Code	19ME742	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of Lecture Hours	42			SEE Hours: 03
Prerequisite:				
 Course Objectives: 1. To impart knowledge on material selection methods and basics of advanced engineering materials. 2. To introduce the basics of smart materials, composite materials, ceramics and glasses and modern metallic materials and their applications in engineering. 				
	Modules			Teaching Hours
	MODULE-I			
Classification and Selection of Materials: Classification of materials, properties required in Engineering materials, Selection of Materials; Motivation for selection, cost basis and service requirements - Selection for mechanical properties, strength, toughness, fatigue and creep - Selection for surface durability corrosion and wear resistance – Relationship between materials selection and processing - Case studies in materials selection with relevance to aero, auto, marine, machinery and nuclear			08 Hours	
Composite Materials:Fiber reinforced, laminated and dispersed materials with metallic matrix of aluminium, copper and Titanium alloys and with non-metallic matrix of unsaturated polyesters and epoxy resins. Development, Important properties and applications of these materials. MODULE-III Ceramics and Glasses - Bio-ceramics: Nearly inert ceramics, bio-reactive glasses and glass ceramics, porous ceramics; Calcium phosphate ceramics: grafts, coatings Physico-chemical surface modification of materials used in medicine. Low & High Temperature Materials: Properties required for low temperature applications, Materials available for low temperature applications, Requirements of			08 Hours 10 Hours	
materials for high temperature applications, Materials available for high temperature applications, Applications of low and high temperature materials. MODULE-IV Modern Metallic Materials : Dual Steels, Micro alloyed, High Strength Low alloy (HSLA) Steel, Transformation induced plasticity (TRIP) Steel, Maraging Steel, Inter metallics, Ni and Ti Aluminides. Non-metallic Materials: Polymeric materials and their molecular structures, Production Techniques for Fibers, Foams, Adhesives and Coatings, structure, Properties and Applications of Engineering Polymers.				08 Hours

C						
SI	Sinart Wraterials: Shape Memory Alloys, varistors and intelligent materials for bio-					
med	nedical applications. Nanomaterials: Definition, Types of nanomaterials including 08 Hours					
carb	on nano	tubes and nanocomposites, Physical and mechanical properties,				
Арр	lications o	f nanomaterials.				
Que	stion pap	per pattern:				
1. To	otal of Ten	Questions with two from each MODULE to be set covering the entire syll	abus.			
2. Fi	ve full que	estions are to be answered choosing at least one from each MODULE.				
3. Ea	ach questio	on should not have more than 4 sub divisions.				
Tez	t book	s:				
1. E	ngineerin	g Material Technology, James A. Jacobs & Thomas F. Kilduff Prentice Hall	2018.			
2. M	laterials So	cience and Engineering, WD. Callister Jr Wiley India Pvt. Ltd 2010.				
Reference Books:						
1. E	ngineerin	g Design: A Materials and Processing Approach G.E. Dieter McGra	w Hill 1991			
2. N	Iaterials S	Selection in Mechanical Design M.F. Ashby Pergamon Press 1992				
3. I	ntroductio	on to Engineering Materials & Manufacturing Processes NIIT Pre	entice Hall of			
Indi	a					
4. E	ngineerin	g Materials Properties and Selection Kenneth G. Budinski Prentice	Hall of India			
Еb	E books and online course materials:					
Course outcomes:						
On completion of the course, the student will have the ability to:						
	СО	Course Outcome (CO)				
Explain the concepts and principles of advanced materials ar		Explain the concepts and principles of advanced materials and	manufacturing			
	(01	processes.	_			

Understand the applications of all kinds of Industrial materials.

Define Nanotechnology, Describe nano material characterization.

Apply the material selection concepts to select a material for a given application.

Understand the behaviour and applications of smart materials, ceramics, glasses and

CO2

CO3

CO4

CO5

non-metallic materials.

Subject Code19ME743Credits03	CIE: 50
Number of Lecture Hours/Week3 (Theory)S	SEE: 50
Total Number of Lecture Hours42SE	EE Hours: 03
Prerequisite: Basic concept of Engineering Chemistry, Thermodynamics and Fluid mechanics.	
Course Objectives:	
 To explain the importance of alternate fuels, their availability, properties and to delineate the types of them. To analyze and apply the effects of use of alcohols on Performance and Emission 	
in SI and CI engines. 3. To modify SI and CI engines which use CNG, LPG, H2, Biogas as fuels, to analyze	
Performance and Emission Characteristics of them.	
4. To test the Performance and Emission parameters of Vegetable oils and Bio-	
diesels on Cl engines.	
s. To examine different energy sources available for hybrid engines and to explain with sketches ECS. Fuel cell and Batteries	
Modules Te	eaching Hours
MODULE-I	
Introduction: Need for alternate fuel, availability and properties of alternate fuels, LPG, hydrogen, ammonia, CNG and LNG, vegetable oils and biogas, merits and demerits of various alternate fuels, introduction to alternate energy sources. Like EV, hybrid, fuel cell and solar energy.	8 Hours
MODULE-II	
Alcohols: DME, DEE and their blends and their effects on performance of SI and CI engines and Combustion and Emission characteristics related numerical problems.	8 Hours
MODULE-III	
Natural Gas, LPG, Hydrogen and Biogas:modification required in engines,Performance and Emission Characteristics of CNG, LPG in SI and CI engines,1CHydrogen as fuel, its storage, handling, performance and safety.1C	0 Hours
MODULE-IV	
Vegetable Oils:Various vegetable oils for engines, esterification, performance in engines, performance and emission characteristics, biodiesel and its characteristics.OE	8 Hours
MODULE-V New Generation Energy Sources (NGES): Energy sources for hybrid engines	
advantages and limitations, required system components and Electronic Control	8 Hours
Systems (ECS), for use of NGES in engines, High energy and power density batteries,	• • • • • •
fuel cell.	

- 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- 2. Five full questions are to be answered choosing at least one from each MODULE.

3. Each question should not have more than 4 sub divisions.

Text books:

- 1. Alternative Fuels Guide Book, Richard L. Bechfold, SAE International Warren dale 1997
- 2. Energy Today & Tomorrow, Maheswar Dayal, I & B Horsier India 1982.

Reference Books:

- 1. Power Plant Engineering, Nagpal, Khanna Publishers 1991.
- 2. Alcohols as motor fuels progress in technology, Series No.19, SAE Publication USE 1980.

E books and online course materials:

Course outcomes: On completion of the course, the student will have the ability to:

Course	СО	Course Outcome (CO)
Code	#	
	CO1	Explain the importance of alternate fuels, their availability, properties and to delineate the types of them.
CO2 Analyze and apply the effects of use of alcohols on Performance and E SI and CI engines.		
	CO3	Modify SI and CI engines which use CNG, LPG, H2, Biogas as fuels, to analyze Performance and Emission Characteristics of them.
	CO4	Evaluate the Performance and Emission parameters of Vegetable oils and Bio- diesels on CI engines.
	CO5	Examine different energy sources available for hybrid engines and to explain with sketches ECS, Fuel cell and Batteries.

CRYOGENIC				
Subject Code	19ME744	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of Lecture Hours	42			SEE Hours: 03
Prerequisite:				
 Course Objectives: 1. To understand cryogenic system and gas liquefaction system 2. To analyze gas cycle cryogenic refrigeration system 3. To Comprehend gas separation and gas purification system 4. To have detailed knowledge of vacuum technology, insulation, storage of cryogenic liquids 5. To study applications of cryogenics and to embark on cryogenic fluid 				
	Modules			Teaching Hours
MODULE-I Introduction to Cryogenic Systems: Cryogenic propellants and its applications, liquid hydrogen, liquid nitrogen, and liquid Helium. The thermodynamically Ideal system Production of low temperatures – Joule Thompson Effect, Adiabatic expansion. Gas Liquefaction Systems: Liquefaction systems for Air Simple Linde –Hampson System, Claude System, HeyIndt System, Dual pressure, Claude. Liquefaction cycle Kapitza System. Comparison of Liquefaction Cycles Liquefaction cycle for hydrogen, helium and Neon, Critical components of liquefaction systems.				08 Hours
MODULE-II				
Gas Cycle Cryogenic Refrigeration Systems: Classification of Cryo coolers, Stirling cycle Cryo – refrigerators, Ideal cycle – working principle. Schmidt's analysis of Stirling cycle, Various configurations of Stirling cycle refrigerators, Integral piston Stirlingcryo-cooler, Free displacer split type StirlingCryo coolers, Gifford McmahonCryo- refrigerator, Pulse tube refrigerator, Solvay cycle refrigerator, Vuillimier refrigerator, Cryogenic regenerators.				08 Hours
MODULE-III				
Gas Separation and Gas Purification Systems: Thermodynamic ideal separation system, Properties of mixtures, Principles of gas separation, Linde single column air separation. Linde double column air separation, Argon and Neon separation systems.				08 Hours
Ultra Low Temperature Cryo – Re Dilution refrigerator. Pomerand temperatures, Temperature m thermometers, Thermocouples, Th	efrigerators: Magne chuk cooling. Me easurement at lo nermistors, Gas The	to Caloric Refri asurement sy ow temperatu mometry. Liqu	gerator 3He-4He stems for low Ires, Resistance id level sensors.	

	MODULE-IV							
Vacuum Techno Vacuum Techno Mashaniaal yaaa	blogy: nology: Fundamental principles. Production of high vacuum,							
vacuum level. (viecnanical vacuum pumps, Diffusion pumps, Cryo-pumping, Measurement of high vacuum level. Cryogenic Insulation: Heat transfer due to conduction, Evacuated porous insulation Powder & Fibers Opacified powder insulation. Gas filled powders &							
Fibrous material	s Multilayer super-insulation, Composite insulation							
	MODULE-V							
Cryogenic Fluid	Storage And Transfer Systems: Design of cryogenic fluid storage							
vessels, Inner v Cryogenic fluid t	vessel, Outer Insulation, Suspension system, Fill and drain lines. ransfer, External pressurization, Self pressurization, Transfer pump.	10.11						
Application of	Cryogenic Systems: Cryogenic application for food preservation -	10 Hours						
Instant Quick Fr	eezing techniques Super conductive devices, Cryogenic applications							
for space techn	ology. Application of cryogenic systems, super conducting devices,							
space technolog	y, cryogenic in biology and medicine.							
Question pape	r pattern:							
1. Iotal of Ien C	uestions with two from each MODULE to be set covering the entire syll	abus.						
2. Five full quest	should not have more than 4 sub divisions							
Text books:								
1. Cryogenic Sys	tems – R.F. Barron							
2. Cryogenic Eng	ineering – R.B. Scott – D.VanNostrand Company, 1959							
Reference E	ooks:							
1. Cryogenic Pro	cess Engineering – K.D. Timmerhaus and T.M. Flynn, Plenum Press, Nev	v York,1989						
2. High Vacuum	Technology – A. Guthree – New Age International Publication Techniques in Low Temperature Physics – G.K. White – Osford Universi	ty Pross						
E books and	online course materials:	Ly 11633,						
Course outo On complet	Course outcomes: On completion of the course, the student will have the ability to:							
СО	CO Course Outcome (CO)							
CO 1	To be able to understand the cryogenic system.							
C02	To have complete knowledge of cryogenic refrigeration system							
CO3	To be able to design gas separation and gas purification system							
CO4	To able to solve the problem in , insulation, storage of cryogen	ic liquids						
C05	To be able to apply cryogenic in various areas and to be able tal research in cryogenics	ke up						

	MECHATR	RONICS		
Subject Code	19ME745	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of Lecture Hours	42			SEE Hours: 03
Prerequisite:				
 Course Objectives: To acquire a strong foundation control, software, and computer technologies. To understand the evolution and 3.To substantiate the need for inter 4. To understand the applications the functions of each element. To demonstrate the integration 6. To be able to work efficiently in 				
Modules				
	MODULE-I			
 Introduction: Scope and elements of mechatronics, mechatronics design process, measurement system, requirements and types of control systems, feedback principle, Basic elements of feedback control systems, Classification of control system. Examples of Mechatronics Systems such as Automatic Car Park system, Engine management system, Antilock braking system (ABS) control, Automatic washing machine. Transducers and sensors: Definition and classification of sensors, Principle of working and applications of light sensors, Potentiometers, LVDT, Capacitance sensors, force and pressure sensors, Strain gauges, temperature sensors, proximity switches and Hall Effect sensors 				09 Hours
	MODULE-II			
Signal Conditioning: Introduction conversions, resolution, Filtering capacitors, amplifying signals usin Analog conversion, Low pass, hig (DAQS), data loggers, Supervi Communication methods. Electro Mechanical Drives: Relay motors – DC brushless motors – D Pulse Width Modulation.	on – Hardware – g Noise using pa ng OP amps. Digit gh pass, notch filf isory control ar rs and Solenoids – C servo motors – 4	Digital I/O, A ssive compone al Signal Proces tering. Data acc nd data acqu - Stepper Moto I-quadrant servo	analog to digital nts – Registers, ssing – Digital to quisition systems isition (SCADA), rs – DC brushed o drives, PWM's –	08 Hours

MODULE-III Microprocessor & Microcontrollers: Introduction, Microprocessor systems, Basic elements of control systems, Microcontrollers, Difference between Microprocessor and Microcontrollers. Microprocessor Architecture: Microprocessor architecture and terminology-CPU, memory and address, I/O and Peripheral devices, ALU, Instruction and Program, Assembler, Data Registers, Program Counter, Flags, Fetch cycle, write cycle, state, bus interrupts. Intel's 8085A Microprocessor.	08 Hours
ΜΟΟΙ ΙΙ Ε-Ιν	
Programmable Logic Controller: Introduction to PLCs, Basic structure of PLC, Principle of operation, input and output processing, PLC programming language, ladder diagram, ladder diagrams circuits, timer counters, internal relays, master control, jump control, shift registers, data handling, and manipulations, analogue input and output, selection of PLC for application.	09 Hours
Application of PLC control: Extending and retracting a pneumatic piston using latches, control of two pneumatic pistons, control of process motor, control of vibrating machine, control of process tank, control of conveyer motor etc.	
MODULE-V	
 CNC machines - Machine Elements: Different types of guide ways, Linear Motion guideways. Bearings: anti-friction bearings, hydrostatic bearing and hydrodynamic bearing. Re-circulating ball screws. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools. Mechatronics Design process: Stages of design process – Traditional and Mechatronics design concepts – Case studies of Mechatronics systems – Pick and place Robot – Automatic car park barrier. 	08 Hours
Question paper pattern:	
 Total of Ten Questions with two from each MODULE to be set covering the entire sylla Five full questions are to be answered choosing at least one from each MODULE. Each question should not have more than 4 sub divisions. 	abus.
 Text books: Mechatronics-Principles Concepts and Applications Nitaigour Premchand Mahalik ata 1stEdition, 2003 	a McGraw Hill
2. Mechatronics-Electronic Control Systems in Mechanical and Electrical Engineering, W	/.Bolton
Pearson Education 1 st Edition, 2005	
Keterence Books:	
 Mechatronics HMT Ltd Tata Mc Graw Hill 1st Edition, 2000 ISBN:978007 4636435 Mechatronics: Integrated Mechanical Electronic Systems K.P. Ramachandran, G.K. Vij M.S. Balasundaram. Wiley India Pvt. Ltd. New Delhi,2008 Introduction to Mechatronics and Measurement Systems David G. Aldatore, Micha McGraw-Hill Inc USA,2003 	jayaraghavan, ael B. Histand
4. Mechatronics System Design Devdas Shetty, Richard A. kolk Cengage publishers. seco	nd edition

Cours On co	e outco mpleti	omes: on of the course, the student will have the ability to:				
	CO Course Outcome (CO)					
	CO1	Illustrate various components of Mechatronics systems.				
	CO2 Assess various control systems used in automation.					
	Design and conduct experiments to evaluate the performance of a mechatronics system or component with respect to specifications, as well as to analyse and interpret data.					
	CO4	Apply the principles of Mechatronics design to product design.				
	CO5	Function effectively as members of multidisciplinary teams.				

OPEN ELECTIVE - II NON-CONVENTIONAL ENERGY SOURCES

1011-			I SUURCES		
Subject Code	190E751M	Credits	03	CIE: 50	
Number of Lecture Hours/Week	3 (Theory)	3 (Theory)			
Total Number of Lecture Hours	42			SEE Hours: 03	
Prerequisite: Should h	ave knowledge of e	energy sources and	their utilization.		
Course Objectives:	U				
1. Understand energy scen	ario, energy source	s and their utilization	on.		
2. Learn about energy conv	version methods and	d their analysis.			
3. Study the principles of re	enewable energy co	onversion systems.			
4. Understand the concept	of green energy an	d zero energy.			
	Module	S		Teaching Hours	
	MODULE-	·I			
Introduction: Energy Source, India's prod for non-conventional en photovoltaic, water power, waves, geothermal, tarsan and disadvantages, compar					
Solar Radiation: Extra – Terrestrial radiation constant, solar radiation at solar radiation data. Measurement of solar radi recorder, schematic diagram	09 Hours				
	MODULE-				
Photovoltaic Conversion: Description, principle of wo Solar Thermal Conversion: Collection and storage, the air heaters concentrating co storage, latent heat stora heating and cooling, ac refrigeration. Distillation so	09Hours				
Wind Energy Properties of wing, availab from wind; major problem wind machines and their elementary design princip aerodynamic consideration Tidal Power: Tides and waves as en characteristics of tidal power	bility of wind energy s associated with w characteristics, hor les; coefficient of s of wind mill desig nergy suppliers a er, harnessing tidel	gy in India, wind v vind power, wind r izontal and vertica performance of a n. nd their mechar energy limitations	elocity and power nachines; Types of al axis wind mills, a wind mill rotor, nics; fundamental	08 Hours	

	MODULE-IV					
Ocean Th Principle associate Geothern Principle geothern scope of	ermal Energy Conversion: of working, Rankine cycle, OTEC power stations in the world, problems d with OTEC. mal Energy Conversion : of working, types of geothermal station with schematic diagram, hal plants in the world, problems associated with geothermal conversion, geothermal energy.	08Hours				
	MODULE-V					
Energy Fr Photosyn productic plants, t applicatic Hydrogen Propertie source c decompo Storage a Gaseous, industrial	Energy From Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages. Hydrogen Energy: Properties of Hydrogen with respect to its utilization as a renewable from of energy, source of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production and bio-chemical production. Storage and Transportation Methods: Gaseous, cryogenic and metal hydrides, application of hydrogen, domestic and					
Questi	on paper pattern:					
1. Total o	f Ten Questions with two from each MODULE to be set covering the entire sy	yllabus.				
2. Five fu	I questions are to be answered choosing at least one from each MODULE.					
3. Each q	aestion should not have more than 4 sub divisions.					
1. G.D Ra	K, "Non conventional energy sources", Khanna publishers.2004,					
ISBN:97	88174090737					
2. Subhas	P.Sukhatme, J K Nayak, "Solar energy", Tata Mc Graw Hill,India 3rd					
Edition.	2009, ISBN: 9780070142961					
	nce Books:	and conversion				
technolog	vy" Tata Mcgraw Hill 2001 ISBN:9780074600238					
2.John V	/.Twidell, Tony Weir, "Renewable energy resources", Routledge, 4th	edition, 2014,				
ISBN:978	0415633581					
3.Solar Po	ower Engineering: P K Nag TMH.2003					
Course	outcomes:					
	apietion of the course, the student will have the ability	y lo:				
CO	Course Outcome (CO)					
CO1	Students will be able to study concepts of various renewable energy systems					
C02	Identify renewable energy sources and their utilization					
CO3	Discuss the basic concepts of solar radiation and analyze the working	of solar PV and				
	thermal systems.					
CO4	Explain principles of energy conversion from alternate sources i geothermal, ocean, biomass, biogas.	ncluding wind,				
CO5	Implement the concepts and applications of fuel cells, thermoelectric con- generator methods of energy storage for specific applications.	vertor and MHD				

	SIMULATION & CIM LAB				
Subject Co	de	19MEL75	Credits	01	CIE: 50
Number of Hours/Wee	Lecture k	2 (Practical)	I	L	SEE: 50
Total Num Lecture Ho	ber of ours	28			SEE Hours: 03
Prerequi	site: 1.	Students should have th	e knowledge o	of design of machine	
elements an	nd comput	ational skills.	_	-	
2. Students	should hav	ve the knowledge of basic	computer opera	ations and the subject	
knowledge o	of CAD/CA	M. CIM and FEA.		,	
3. Students	should ha	ve the knowledge of G- co	des and M- cod	es to be able to write	
the program	ns so as to	prepare the jobs on CNC	turning and Mill	ing machines.	
4. Students	should have	ve the knowledge of G- co	des and M- cod	es to be able to write	
the program	ns to simul	ate turning and milling ope	erations.		
Course Obje	ctives:				
1. To impa	rt knowle	dge of using FEA packag	ge for designin	g and analyzing the	
structural m	embers ur	nder given load, material a	nd geometric co	inditions.	
2. To make	the stude	nts understand the effect of	of loading in ter	ms of magnitude and	
nature of str	ress, strain	, displacement.			
3. To impa	rt knowle	dge about G- codes, M-	codes and to	prepare them write	
programs us	sing G- coo	les and M- codes to simula	ate Turning and	Milling operations to	
produce req	uired spec	cimen.			
4. To be abl	e to write	programs using G- codes	and IVI- codes a	ccording to the given	
specimen	ieeu tile			hes to produce that	
5. To be at	ole to visu	alize and appreciate the r	ole of Robots i	n Manufacturing and	
understand	the operat	tion of simple PICK and PLA	ACE.		
		Modules	i .		Teaching
	Hours				
1. Examples using Parametric Packages for FEA – Inventor,/Pro/E,Catia-04					14 Hours
2. (UI Latne & UI Milling)					14 Hours
Course outcomes:					
On completion of the course, the student will have the ability to:					to:
Course	CO #	Course Outcome (CO)		
Code	001	T . I I		· · · · · · · · · · ·	
	COI	to be able to learn us	sing FEA packa	ge for designing and	analyzing the
	structural members under given load, material, geometric properties.				

CO2	To be able to understand the magnitude of stress, strain, displacement as a result of application of load
	result of application of load.
~ ~ ~	

CO3	To be able to learn usage of G- codes and M- codes in writing the program to
	simulate Turning and Milling operations to produce required specimen.
CO4	To be able to write programs using G- codes and M-codes, feed them into the CNC machines and learn to operate CNC machines to produce specimen.
CO5	To understand the working of Pick and place Robot action.

	SEMINAR					
Subject (Code	19ME76	Credits	01	CIE: 50	
Number Hours/W	of Lectur leek	e 4			SEE:	
Prerequ	isite: Stud	dent should have kno	wledge of all the su	bjects of mechanica	1	
Course C)utcomes	•				
1. To eq research fields	uip stude review c	nts for making a tec on any contemporary	hnical presentation a area of Engineerir	based on a thorough and Managemen	n t	
2. Offering the student an opportunity to interact with faculty and peer group and to build the ability to making independent presentation.						
	Teaching Hours					
	1	Seminar shall be prese	ented during 7 th / 8 th v	veek of the semester		
		in the department	before the Depa	rtmental Evaluation		
	2	The seminar marks are	e to be awarded by the	e committee.	08 Hours	
	3	Students shall submi	it the seminar repor	t in the prescribed	-	
Course On con	outcor npletion	nes: n of the course, 1	the student will	have the ability	y to:	
Course	CO	Course Outcom	le (CO)			
Code	#					
CO1 Conduct literature survey on a current topic based on p literature & Identify research gap in the literature					peer reviewed	
CO2 Develop methodologies to resolve the identified problem(s)						
	CO3 Develop presentation slides / report arranging the material co					
	CO4	Present and discuss report	s the topic with clar	ity and confidence	and submit the	
	C05	Summarize the pres	sentation and identify	scope for further w	ork	

PROJECT WORK PHASE-I					
Subject Code	ubject Code 19MEP77 Credits 02				
Number of Lecture Hours/Week 4 (Practical)					SEE: 50
Total Number Lecture Hours	of 42				SEE Hours: 03
Prerequisite	Prerequisite: All the Subjects knowledge of mechanical engineering.				
Prerequisite: All the Subjects knowledge of mechanical engineering. Course Objectives: 1. To provide an amicable atmosphere for students to plan. 2. To test their learned theory knowledge in an actual working situation. 3. To discover the value of work and relish rewards of accomplishment. 4. To ensure a professional preparation to the liberal educational goals. Modules The project proposal shall be presented in the following form. 2 Exhaustive literature survey 3 Methodology 4 References The Project Proposal shall be submitted within 2 weeks from the start of the semester in the prescribed standard format (04 copies) to the HOD, after the certification of the concerned guide and HOD. Minimum No. of students per batch: 02 Maximum No. of students per batch: 04					
As	sessment		Mark	(S	
CIE I Evaluatio	n (6 th week)		25		
CIE II Evaluatio	on (12 th week)		25		
SEE			50		
Total			100		
Reference E	ooks: on line J	ournals, u	pdated recent	information.	
Course outo On complet	omes: ion of the cou	rse, the s	student will h	nave the ability	to:
Course CO	# Course	Outcome	(CO)		
CO1	Literature r	eview on pa	r with internation	al journal standards	
CO2	CO2 Literature gap determination and definition of the problem				
CO3	Scientific D	esign / Num	erical Analysis / A	nalytical model and ir	nterpret them.
CO4	Apply adva	nce tools / to	echniques for pro	blem solving.	
COS	Prepare a c	letailed proj	ect work report.		

B.E VIII SEM

PROJECT MANAGEMENT					
Subject Code	19ME81	Credits	04	CIE: 50	
Number of Lecture Hours/Week	4 (Theory)			SEE: 50	
Total Number of Lecture Hours	52			SEE Hours: 03	
Prerequisites of the co	urse: Student	should have know	ledge of Operations		
Management and Basic kn	owledge of Acco	ounting			
Course Objectives: 1. To make them under planning to execution of p 2. To make them underst and network analysis tools 3. Make them capable to management tools and me	 Course Objectives: 1. To make them understand the concepts of Project Management for planning to execution of projects. 2. To make them understand the feasibility analysis in Project Management and network analysis tools for cost and time estimation. 3. Make them capable to analyze, apply and appreciate contemporary project 				
	MODU	J LES		Teaching Hours	
MODULE-I CONCEPTS OF PROJECT MANAGEMENT: concepts of project, categories of project, phase of project life cycle, role and responsibilities of project leaders, tool and techniques for project management. PROJECT PLANNING: feasibility report phased planning, project planning steps, objectives and the goals of the project.				10 Hours	
MODULE-II ESTIMATING: preparation of cost estimation, evaluation of the project profitability, financial analysis. PROJECT ORGANIZING: project organization and types, accountability in project organization.					
MODULE-III STAFFING THE PROJECT TEAM: skills /abilities required for project manager, authorities and responsibilities of project manager, tendering and selection of contractors. PROJECT SCHEDULING: project implementation scheduling, effective time management, and different scheduling and resources allocation methods, Machine loading and sequencing: Johnson's rule					
MODULE-IV TOOLS AND TECHNIQUES OF PROJECTS MANAGEMENT: bar chart (Gantt chart), bar chart for combined activates, logic diagrams and networks, project evaluation and review techniques (PERT), planning computerizes project management. CO-ORDINATION AND CONTROL: Project Direction communication in a project, MIS project co-ordination, project controls requirement for project or role of MIS in project controls, performance controls, schedule control, cost controls,					
PERFORMANCE MEASURES analysis and network diagra and backward pass), CPM, Probabilistic time estimates,	MODU & NETWORK AN am, Computation Computation of f probability of proj	LE-V JALYSIS : Performand of project completion float, Difference bet ject completion by a	e Indicators, Network on time (Forward pass ween PERT and CPM, target date.	12 Hours	

- Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- Five full questions are to be answered choosing at least one from each MODULE.
- Each question should not have more than 4 sub divisions.

Text books:

1. Chaudhary S.; Project Management, Tata Mc Graw Hill

2. Prasanna Chandra; Projects- Planning, Analysis, Selection, Financing, Implementation and Review', I Edition, Tata Mc Graw Hill, 8th Edition 2015.

Reference Books:

- 1. Kerzner H.; Project Management, II Edition, CBS Publishers
- 2. Meredith Jack R., Mantel Samuel J.; Project Management, IV Edition, John Wiley & Sons
- 3. Gopalakrishnan P., Ramamurthy V.E; Textbook of Project Management, MacMillan Publishers
- 4. Maylor Harvey, Project Management, MacMillan Publishers
- 5. Matheen A. Prof., Comprehensive Project Management, Laxmi Publications (P) Ltd.
- 6.Project Management,Gopalan, Wiley India

7.A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5th Ed, Project Management Institute PA, USA

8. Project Management, Dennis Lock, 9th Edition, Gower Publishing England

E books and online course materials:

Course	e outcomes: On completion of the course, the student will have the ability to
COs	Course Outcomes
CO1	Describe and identify the projects of different categories, phases of product life cycle, tools and techniques for project management.
CO2	Organize the staff and prepare project teams and define the goals of the project and understand the concepts of project planning and estimation.
CO3	Schedule the project, identify the performance indicators and measure the performance of a project.
CO4	Coordinate and control the project activities.
CO5	Write work break down structure for a project and develop a schedule based on it.

Professional Elective- 5					
RAPID PROTOTYPING AND MODELLING					
Subject Code	19ME821	Credits	03	CIE: 50	
Number of Lecture Hours/Week	3 (Theory)			SEE: 50	
Total Number of	42			SEE Hours:	
Prerequisite:				05	
Course Objectives					
 1. Understand technology used in r 2. Recognized importance of rapid 3. Acquire knowledge, techniques a tooling process. 4. Comprehend the potential of rap sectors. 5. Illustrated 3D printing technolog 	apid prototyping a prototyping in adv and skills to select pid prototyping and y for Rapid prototy	nd tooling. ance manufactu relevant rapid pi d tooling in diffe yping and Model	ring process. rototyping and rent industrial ing		
	Modules			Teaching	
				Hours	
	MODULE-I				
Evolution, basic principle, concept, procedure and need of rapid prototyping and tooling, Classification of rapid prototyping and tooling processes (Additive/Subtractive/Deformative), Classifications of materials used for Rapid prototyping and tooling, Industrial applications of rapid prototyping and tooling, Most commonly used processes for rapid prototyping.				08 Hours	
	MODULE-II				
Processes used for rapid prototyping and modeling: Stereolithography Apparatus (SLA), Fused Deposition Modeling (FDM), Selective Deposition Lamination (SDL), Laminated Object Manufacturing (LOM), Ultrasonic Consolidation, Laser Engineered Net Shaping (LENS), Electron Beam Free Form Fabrication (EBFFF), Selective Laser Sintering (SLS), Electron Beam Melting (EBM). Convectional Tooling vs Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect rapid tooling methods.			10 Hours		
	MODULE-III				
CAD for rapid prototyping and modeling:08 HoursPreparation of 3D-CAD model in STL format, Reverse engineering, Reconstruction of 3D CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and generation of codes for tool path.08 Hours					
MODULE-IV					
Constructions of manipulator systems for rapid prototyping and modeling:08 HoursAxes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass08 Hoursscales, Process Chamber, Safety interlocks, Sensors, Energy delivery systems, Material08 Hours				08 Hours	
	MODULE-V				
Post processing in rapid prototyping and modeling:08 HoursSupport material removal, Surface texture improvement, Accuracy improvement, Aesthetic improvement, Property enhancements using non-thermal and thermal techniques. 3D printing: Introduction, process parameters involved, advantages and Disadvantages.08 Hours					

1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.

- 2. Five full questions are to be answered choosing at least one from each MODULE.
- 3. Each question should not have more than 4 sub divisions.

Text books:

1. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010.

2. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.

3. Ian Gibson, "Software Solutions for Rapid Prototyping", Professional Engineering Publishing Limited, UK, 2002.

Reference Books:

1. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A toolbox for prototype development", CRC Press, 2007.

2. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.

3. Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRC press, 2000.

E books and online course materials:

Course outcomes:

On completion of the course, the student will have the ability to:

CO	Course Outcome (CO)
CO1	Explain rapid prototyping and tooling for manufacturing complex geometries.
CO2	Identify and solve problems related to rapid prototyping and modeling.
CO3	Select suitable process and materials for rapid prototyping and modeling
CO4	Distinguish technique of CAD and reverse engineering for geometric transformation in rapid prototyping and modeling.
CO5	Determine part orientation, apply suitable slicing algorithm and generate tool path for minimum build time.

FLEXIBLE MANUFACTURING SYSTEMS				
Subject Code	19ME822	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of Lecture Hours	42			SEE Hours: 03
Prerequisite:				
Course Objectives:1) To impart knowledge of FMS2) To make students to understand the Numerical control Machining centers.3) To expose students to Industrial robotics and Tool management.4) To expose students to FMS hardware and software systems.5) To introduce the students to the concepts of JIT in Production system.				
	Modules			Teaching Hours
	MODULE-I			
INTRODUCTION :- Definition, Basic components of FMS, Levels of manufacturing flexibility, Different types of FMS, FMS Layout configurations, Objectives of FMS, Advantages and disadvantages of FMS.FMS Planning and Design Issues and operational issues.			08 Hours	
MODULE-II MANUFACTURING CELL: - Introduction, classification of cell, Unattended machining, Differences between FMC AND FMS. MACHINING CENTERS: - Introduction to machining centers, classification, numerical control machining centers, NC Turning center. Deburring, types of Automated Deburring, wash stations, classification of wash stations.			09 Hours	
INDUSTRIAL ROBOTICS : - Robot ar industrial robot applications.	MODULE-III natomy, Robot co	ntrol systems, sei	nsors in robotics,	
CUTTING TOOLS AND TOOL MANAGEMENT : - Introduction to cutting tools, control of cutting tools, Role of Tool management in FMS, Tool monitoring and fault detection.			09 Hours	
MODULE-IV FMS SYSTEM HARDWARE AND SOFTWARE STRUCTURE : - General structure and requirements, Introduction to PLC, components of PLC and PLC programming. FMS installation and implementation, acceptance testing.			08 Hours	
MODULE-V JIT AND KANBAN SYSTEM : - Lean production system, Introduction to Just-in-Time (JIT) Production system, Goals of JIT, Benefits of JIT, Principal Objectives of JIT, Error Prevention, Introduction to Kanban system, types of Kanban.			08 Hours	

Questio	n paper	pattern:				
1. Total o	of Ten Qu	estions with two from each MODULE to be set covering the entire syllabus.				
2. Five full questions are to be answered choosing at least one from each MODULE.						
3. Each question should not have more than 4 sub divisions.						
Text b	ooks:					
1. 1.Shiv	anand H	.K., Benal MM, Koti V, "Flexible Manufacturing System", New age international				
(P)Limite	ed, New D	Delhi, 2006				
Refere	ence Bo	ooks:				
1. Mikell	P. Groov	er "Automation, Production Systems and Computer Integrated Manufacturing",				
PHI, 200	8.					
2. Kalpak	kjin, "Mar	nufacturing Engineering and Technology ", AddisonWesley Publishing Co., 1995.				
Course	e outco	omes:				
On completion of the course, the student will have the ability to:						
	CO Course Outcome (CO)					
	CO1	Discuss the role of FMS in manufacturing systems.				
		Describe the concept of NC machining centers and Automated Deburring				
	CO2	operations.				
	CO3	CO3 Role of Industrial robotics in manufacturing systems and tool management				
		Toto of manufacturing systems and tool management.				
	CO4 Recognize various FMS Hardware and software systems.					
	CO5	Understand the importance JIT methods in Manufacturing systems.				

VEHICLE DYNAMICS				
Subject Code	19ME823	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of Lecture Hours	42			SEE Hours:
Prerequisite:	I			
Course Objectives: 1. To develop the basic knowledge vehicle vibrations. 2.To develop the skills of the stude with longitudinal, vertical & lateral				
	Modules			Teaching Hours
	MODULE-I			110015
CONCEPT OF VIBRATION: Definitions, Modeling and Simulation, Global and Vehicle Coordinate System, Free, Forced, Undamped and Damped Vibration, Response Analysis of Single DOF, Two DOF, Multi DOF, Magnification Factor, Transmissibility, Vibration Absorber, Vibration Measuring Instruments, Torsional Vibration, Critical Speed.				08 Hours
TIRE DYNAMICS: Tire Forces and Moments, Tire Structure, Longitudinal and Lateral Force at Various Slip Angles, Rolling Resistance, Tractive and Cornering Property of Tire. Performance of Tire on Wet Surface. Ride Property of Tires. Magic Formulae Tire Model, Estimation of Tire Road Eriction. Test on Various Road Surfaces. Tire Vibration				08 Hours
	MODULE-III			
VERTICAL DYNAMICS: Human Response to Vibration, Sources of Vibration. Design and Analysis of Passive, Semi-Active and Active Suspension Using Quarter Car, Half Car and Full Car Model. Influence of Suspension Stiffness, Suspension Damping, and Tire Stiffness. Control Law for LQR, H-Infinite, Skyhook Damping. Air Suspension System and Their				08 Hours
	MODULE-IV			
LONGITUDINAL DYNAMICS: Aerodynamic Forces and Moments. Equation of Motion. Resistance, Rolling Resistance, Load Distribution for Three Wheeler and Four Wheeler. Calculation of Maximum Acceleration, Reaction Forces for Different Drives. Braking and Driving Torque, Prediction of Vehicle Performance.				
	MODULE-V			
LATERAL DYNAMICS:Steady State Handling Characteristics. Steady State Response to Steering Input.Testing of Handling Characteristics. Transient Response Characteristics, DirectionControl Of Vehicles Roll Center, Roll Axis, Vehicle Under Side Forces. Stability ofVehicle Running on Slope, Banked Road and During Turn, Effect of Suspension onCornering, Latest Trends in Vehicle Dynamic Testing Like Four Poster, Multi AxisSimulator, etc.			10 Hours	

1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.

2. Five full questions are to be answered choosing at least one from each MODULE.

3. Each question should not have more than 4 sub divisions.

Text books:

- 1. Singiresu S. Rao, "Mechanical Vibrations", 5th Edition, Prentice Hall, 2010
- 2. Wong. J. Y., "Theory of Ground Vehicles", 3rd Edition, Wiley-Interscience, 2001
- 3. Rajesh Rajamani, "Vehicle Dynamics and Control", 1st edition, Springer, 2005

4. Thomas D. Gillespie, "Fundamentals of Vehicle Dynamics", Society of Automotive Engineers Inc, 1992

Reference Books:

1. Dean Karnopp, "Vehicle Stability", 1st edition, Marcel Dekker, 2004

2. Nakhaie Jazar. G., "Vehicle Dynamics: Theory and Application", 1st edition, Springer, 2008

3. Michael Blundell & Damian Harty, "The Multibody Systems Approach to Vehicle Dynamics", Elsevier Limited 2004 3. Hans B Pacejka, "Tire and Vehicle Dynamics", 2nd edition, SAE International, 2005

4. John C. Dixon," Tires, Suspension, and Handling", 2nd edition, Society of Automotive Engineers Inc, 1996 6. Jan Zuijdijk, 'Vehicle dynamics and damping", Author House, 2009

E bool	ks and	online course materials:			
Course On co	e outco mpleti	omes: on of the course, the student will have the ability to:			
	CO Course Outcome (CO)				
	CO1	Understand the basics of vibration, when the vehicle is at dynamic condition			
CO2 Understand the tyre dynamics with respect t		Understand the tyre dynamics with respect to force & moments.			
	СОЗ	Derive the effective cornering stiffness when considering the elastic elements in the wheel suspension and be able to analyze effect on the dynamic characteristics of the vehicle			
	CO4	Understand the aerodynamic forces & moments, load distribution in the various vehicles.			
	C05	Test the effective steering geometry, vehicle handling & directional control of vehicle			

COMPUTATIONAL FLUID DYNAMICS					
Subject Code	19ME824	Credits	03	CIE: 50	
Number of Lecture Hours/Week	3 (Theory)			SEE: 50	
Total Number of Lecture Hours	42			SEE Hours: 03	
Prerequisite: Should	d have fundamental	s of physics, fluid r	nechanics and fluid		
dynamics mathematics.					
Course Objectives: 1. This course will prepapproach to study fluid funderstanding of the phy 2. It will also impart the dynamics and heat transf	pare students in th low and heat transf sical models and gov knowledge of nume er problems.	e fundamentals of er problems, and w rerning equations of rical techniques to	the computational ill provide a deeper fluid dynamics. the solution of fluid		
	Modul	es		Teaching Hours	
	MODUL	E-I			
GOVERNING EQUATIONS: Basics of computational fluid dynamics, Comparison of experimental, theoretical and computational approaches, 3-D general mass conservation, momentum and energy equations in differential form, integral form and vector representation (no derivations) Cartesian and curvilinear co-ordinates. Forms of the governing equations particularly suited for CFD work: Generic form of equations.				10 Hours	
	MODULE-II				
PARTIAL DIFFERENTIAL EQUATIONS (PDE): Classification of PDE - physical & mathematical classification of PDE – equilibrium problems, marching problems, Cramer rule and Eigen value method, hyperbolic, parabolic and elliptic forms of equations and their physical behavior. Physical boundary conditions.				07 Hours	
	MODULE	5-111			
FINITE DIFFERENCE METHOD: Derivation of finite difference equations for first and second order accuracy,- different numerical schemes –Explicit and Implicit approach - upwind, downwind, FTCS, etc.,truncation error, Round-off and discretization errors and analysis of stability, Error propagation, Stability properties of Explicit and Implicit methods, numerical dissipation and numerical dispersion. Application of numerical methods to selected model Equations : Wave equation, Heat equation, Laplace equation.				09 Hours	
Finite volume formulation of steady state One dimensional diffusion problems. Simple problem solving, Finite volume methods for diffusion equation. One dimensional unsteady heat conduction through Explicit, Crank – Nicolson and fully implicit.				08 Hours	
MODULE-V					
FINITE VOLUME METHOD FOR CONVECTION – DIFFUSION: Finite volume formulation of steady state One dimensional convection-diffusion problems – Central, upwind, Hybrid, Power-law, QUICK differencing schemes. properties of discretization schemes – Conservativeness, Boundedness, Trasnportiveness.				08 Hours	

Question paper pattern:	
1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.	
2. Five full questions are to be answered choosing at least one from each MODULE.	
3. Each question should not have more than 4 sub divisions.	
Text books:	
1. John C. Tannehill, Dule A Anderson, Richard H Pletcher, "Computational fluid	
mechanics and Heat transfer", CRC press, 3rd edition, April 15, 2011, ISBN-13:	
9781591690375	
Suhas.V Patankar "Numerical Heat Transfer and Fluid Flow", CRC Press	
1980,ISBN-13:9780891165224	
3. Versteeg, H.K., and Malalasekera, W. "An Introduction to Computational Fluid	
Dynamics-The finite volume Method", Pearson, 2ND edition, 2007. ISBN13:9780131274983	
Reference Books:	
1. T.J. Chung, "Computational Fluid Dynamics", Cambridge University Press, 2nd	
edition, 2010, ISBN-13:9780521769693	
2. John D.Anderson, Jr. "Computational fluid Dynamics- The basics with	
applications" McGraw-Hill, Inc.1995, ISBN-13:9780070016859	
Muralidhar, K., and Sundararajan, T. "Computationsl Fluid Flow and Heat	
Transfer", Narosa Publishing House, New Delhi, 2ndedition, 2009, , ISBN13:9788173195228	
E books and online course materials:	
Course outcomes.	
On completion of the course, the student will have the shility to:	
On completion of the course, the student will have the ability to:	

Course	CO #	Course Outcome (CO)		
Code				
	CO1	Apply the differential equations governing fluid flow and heat transfer.		
	CO2	Classify and discribe behaviour of partial differential equations		
	CO3	Discuss and develop finite difference discretizations schemes and implement them to solve engineering problems.		
	CO4	Importance and implications of analytical issues: consistency, stability convergence, error analysis.		
	CO5	Specify and develop finite volume discretization schemes and implement them to solve engineering problems		

MICRO ELECTRO-MECHANICAL SYSTEMS (MEMS)				
Subject Code	19ME825	Credits	03	CIE: 50
Number of Lecture Hours/Week	3 (Theory)			SEE: 50
Total Number of	42			SEE Hours:
Prerequisite:				03
Course Objectives: • Understand overview of r • Working principles of sev • Develop mathematical a • Know methods to fabrica • Various application areas	microsystems, their eral MEMS devices nd analytical mode ate MEMS devices. where MEMS devi	r fabrication and appl s. els of MEMS devices. ices can be used.	lication areas.	
	Modu	les		Teaching
	MODU	LE-I		mours
Overview of MEMS and Microsystems Products, Microelectronics, Multic Applications and Markets.	ficrosystems: MEI Evolution of isciplinary Natur	MS and Microsystem Microfabrication, e of Microsystem	, Typical MEMS and Microsystems and s, Miniaturization.	08 Hours
	MODUI	LE-II		
Working Principles of N MEMS with Microactuator	licrosystems: Intro s, Microaccelerom	oduction, Microsenso eters, Microfluidics.	ors, Microactuation,	
Engineering Science for Microsystems Design and Fabrication: Introduction, Molecular Theory of Matter and Intermolecular Forces, Plasma Physics, Electrochemistry.			10 Hours	
	MODUL	.E-III		
Engineering Mechanics f Thin Plates, Mechanical V Mechanics, Overview on F	or Microsystems ibration, Thermom inite Element Stres	Design: Introduction nechanics, Fracture M as Analysis.	n, Static Bending of Nechanics, Thin Film	08 Hours
	МО	DULE-IV		
Scaling Laws in Miniaturization: Introduction, Scaling in Geometry, Scaling in Rigid-Body Dynamics, Scaling in Electrostatic Forces, Scaling in Fluid Mechanics, Scaling in Heat Transfer.				08 Hours
	MODUL	-E-V		
Overview of Micromanu Micromachining, The LIG	Cacturing: Introduct A Process, Summa	ction, Bulk Microman ry on Micromanufact	ufacturing, Surface uring.	08 Hours
Question paper pattern: 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus. 2. Five full questions are to be answered choosing at least one from each MODULE. 3. Each question should not have more than 4 sub divisions.				
1. Tai-Ran Hsu, MEMS and Wiley.	d Micro systems: D	esign, Manufacture a	and Nanoscale Engine	eering, 2nd Ed,

Reference Books:

1. Hans H. Gatzen, Volker Saile, JurgLeuthold, Micro and Nano Fabrication: Tools and Processes, Springer, 2015.

2. Dilip Kumar Bhattacharya, Brajesh Kumar Kaushik, Microelectromechanical Systems (MEMS), Cenage Learning.

E books and online course materials:

Course outcomes:

On completion of the course, the student will have the ability to:

Course	CO	Course Outcome (CO)
Code	#	
	CO1	Appreciate the technologies related to Micro Electro Mechanical Systems.
	CO2	Understand design and fabrication processes involved with MEMS devices.
	CO3	Analyse the MEMS devices and develop suitable mathematical models
	CO4	Know various application areas for MEMS device
	CO5	Learn various application areas for micromanufacturing

OPEN ELECTIVE - III TOTAL QUALITY MANAGEMENT

Subject Code	190E831	Credits	03	CIE: 50
Number of Lecture				011.50
Hours/Week	3 (Theory)			SEE: 50
Total Number of	12			SEE Hours:
Lecture Hours				03
Prerequisite: Student should have knowledge of production process, utilization of				
Course Objectives:				
1. The aim of course to	L. The aim of course to provides the knowledge of TOM. Benefits of TOM, and			
Contribution of Gurus.		0		
2. Students learn role and	characteristics of lea	ders.		
4. To study product accept	tance plan and supply	V.		
5. To study the concept of	supply chain manag	ement and Experimen	tal design.	
	Modul	es		Teaching
	Hours			
	MODUL	E-I		
Overview of Total Quality Management: Introduction, Definition, Basic Approach,				
Contribution Of quality Gu	urus,TQM frame wor	k, Historical review, k	penefits of TQM,	08 Hours
TQM organization.				
MODULE-II				
Tools and techniques of ⁻	TQM: Basic tools of	TQM, Bench marking o	definition, types of	
benchmarking, processes	of bench marking, a	dvantages and pitfall	s of benchmarking	
quality management systems .ISO-9000 series of standards, implementation and				09 Hours
documentation of ISO_9000. Introduction of QFD and QFD process.				
	MODULE	-III		
Product acceptance control: Design of single sampling, double sampling and multiple				
sampling plan. Willitary STU 105, OC curve, AQL, LTPD, AUQL, Problems. (Intensive				
coverage with numerical problems).				10 Hours
Dodge roming system: Single sampling lot tolerance, Double sampling lot tolerance				10 110015
tables.				
FMEA.				
	MOD	OULE-IV		
Quality Circles: Introduction, origin, Definition, Concept, Philosophical Basis of				
quality circles, Theory X	07 Hours			
or techniques).				

Experiment level(lowent two factor model is acc Team Dev successful problems.	08 Hours				
 Question paper pattern: 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus. 2. Five full questions are to be answered choosing at least one from each MODULE. 3. Each question should not have more than 4 sub divisions. 					
 Text books: 1. Total quality Management Dale H Berster field(etal) Pears education, Third edition Indian Reprint - 2004 2. TQM by K. Shridhar Bhat, pearson Education III, Edn I 2004, Himalya publishing 3. Statistical quality Control by Grant Levenworth (2000). 4. Statistical quality Control by M. Mahajan (2015) 					
Reference Books:1.Stastical quality control by Douglos C Mantego third editon Pearson Education -20062. A new American TQM for revolution in management:Sho- shiba, Alan Graham and,David walder Productivity press Oregon-19903. Organizational excellence through TQM H Lal, New Age Publishers4. Quality control and Total quality management-PL Jain TMH Publications companyLtd - 2001 New Delhi5.Cocran WG, Cox GM, 'Experiment Design' 2 nd edition, John Wiley & Sons, Inc.India 2000					
Course	outcor	nes: n of the course, the student will have the shility	to		
Course Code	CO #	Course Outcome (CO)			
	CO1	Able to apply the knowledge of TQM and contribution of TQM gurus and strong			
	CO2	Identify and implement the tools and techniques like QFD, QFD process and			
	CO3	Design solutions of acceptance sampling plan solving problems of AOQL and percent defective.			
	CO4	Function effectively individual and team work to supply chain management activities coordination and communication is very important.			
	C05	Demonstrate the knowledge of design of experiments, consistent development and improvement.			

MOOC's Certification Course(Online NPTEL Course)				
Subject Code	19MENPTEC	Credits	01	CIE:
				SEE:

PROJECT WORK PHASE-II						
Subject C	Code	19MEP84	Credits	08	CIE: 50	
Number of Hours/W	of Lecture eek	cture 4 (Practical)			SEE: 50	
Total Nu Lecture	mber of Hours	52	SEE Hours: 03			
Prerequ	uisite: Project W	ork Phase-I				
Course Ob	ojectives:					
The students should be able to apply acquired knowledge of courses studied in engineering to identify, formulate, analyze, evaluate and provide solution to a technical problem in the field of mechanical engineering						
Modules				Teaching Hours		
SCHEME OF EVALUATION						
	Assessment		Marks			
CIE I Evaluation (7 th week)			25			
CIE II E	CIE II Evaluation (12 th week) 25				08 Hours	
SEE			50		00 110015	
Total	Total 100					
Course	Course outcomes:					
On con	ipletion of the	e course, the st	udent will ha	ve the ability	to:	
CO #	Course Out	Course Outcome (CO)				
co	Identify a probl	Identify a problem from the available literature and societal needs.				
CO2	Apply principles date acquisition	Apply principles of mechanical engineering in designing and conducting experiments, date acquisition and interpretation towards meaningful analysis of identified problem.				
COS	Use their analy products and fi	Use their analytical, teamwork and leadership skills in designing and development of products and find solution				
CO4	Apply advanced	Apply advanced tools / techniques for solving the problem.				
COS	Prepare a detai	Prepare a detailed quality project report and present the work.				