P D A College of Engineering

B.E. in Respective branch Name

Scheme of Teaching and Examinations 2022

Outcome Based Education(OBE) and Choice Based Credit System(CBCS)

VII SEI	MESTER	(Swappable	VII and	VIII SEMESTER)

					Teaching Hours/Week				Examination				
SI. No		ourse and ourse Code	Course Title	Teaching Department (TD) and Question Paper Setting Board (PSB)	Theory Lecture	Tutorial	Practical/ Drawing	Self-Study	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
				_	L	Т	P	S					
1	IPCC	22ME71	Hydraulics and Pneumatics	TD- Respective Dept. PSB- Respective Dept.	3	0	2		03	50	50	100	4
2	IPCC	22ME72	Computer Integrated Manufacturing	TD- Respective Dept. PSB- Respective Dept.	3	0	2		03	50	50	100	4
3	PCC	22ME73	Energy Engineering	TD-Respective Dept. PSB- Respective Dept.	4	0	0		03	50	50	100	4
4	PEC	22ME74x	Advanced Foundry Technology/PM	TD-Respective Dept. PSB- Respective Dept.	3	0	0		03	50	50	100	3
5	OEC	22MEOE75x	Non Conventional Energy Sources/TQM	TD-Respective Dept. PSB- Respective Dept.	3	0	0		03	50	50	100	3
6	PROJ	22MEP76	Major Project Phase-II	TD-Respective Dept. PSB- Respective Dept.	0	0	12		03	50	50	100	6
										300	300	600	24

Professional	Flective Course	
--------------	-----------------	--

22ME741	Advanced Foundry Technology	22ME743	Nano Technology		
22ME742	Cryogenics	22ME744	Project Management		
Onen Flective Course					

Open Elective Course

22MEOE751	Non Conventional Energy Sources	22MEOE753	Total Quality Management	
22MEOE752	Rapid Prototyping and Modelling	22MEOE754	Vehicle Dynamics	

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, PEC: Professional Elective Course, OEC: Open Elective Course PR: Project Work, L:Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. TD- Teaching Department, PSB: Paper Setting department, OEC: Open Elective Course, PEC: Professional Elective Course. PROJ: Project work

Note: VII and VIII semesters of IV years of the program swapping facility

Institutions can swap the VII and VIII Semester Schemes of Teaching and Examinations to accommodate research internships/industry internships after the VI semester

P D A College of Engineering

B.E. in Respective branch Name

Scheme of Teaching and Examinations 2022

Outcome Based Education(OBE) and Choice Based Credit System(CBCS)

SI. Course and No Course Code					Teaching Hours/Week					Exam	ination		
		Course Title		Teaching epartment (TD) and Question Paper Setting Board(PSB)	Theory	Tutorial	Practical/ Drawing	Self-Study	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
				٥	L	Т	P	S					
1	PEC	22ME81X	Professional Elective-IV (Online Courses) –NPTEL	TD-Respective Dept. PSB- Respective Dept.	3	0	0		03	50	50	100	3
2	OEC	22MEOE82X	Open Elective-III (Online Courses)	TD-Respective Dept. PSB- Respective Dept.	3	0	0		03	50	50	100	3
3	INT	22MEINT83	Internship(Industry/Research)(14-20weeks)	TD-Respective Dept. PSB- Respective Dept.	0	0	12		03	100		100	10
										200	100	300	16
			Professiona	I Elective Courses (Online	cours	es)	•	•				•	
22ME811 Advanced Materials and Processes			22ME814	A	utomat	ion in Ma	nufacturin	g					
22ME	812	Industrial Safe	ety and Fire safety Management	22ME815	D	esign o	f Mechat	ronics Sys	tem				
22ME	813	Fundamentals	of Artificial Intelligence	22ME816	Н	ydroge	n Energy:	Productio	n, Storage	e, Transpo	rtation and	Safety	
	Open Elective Courses(Online Courses)												

	22MEOE822	Artificial Intelligence and Machine Learning in Materials Engineering	22MEOE825	Ergonomics Research Techniques				
22MEOE823 Cyber security, tools, techniques and counter measures		22MEOE826	Electro Chemical and Econmic Aspects of Hydrogen Energy					
	L:Lecture, T:Tutorial, P:Practical S=SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. TD-Teaching Department, PSB:							
	Paper Setting department OFC: Open Flective Course PFC: Professional Flective Course PROI: Project work INT: Industry Internshin/Research Internshin/Rural							

22MEOE824

Basic Apparel Industry and Entrepreneurship

Internship.

Professional Elective/Open Elective Course: These are the ONLINE courses suggested by the respective Board of Studies

Engineering Aspects of Bio fuels and Biomass conversion Technologies

VIII SEMESTER (Swappable VII and VIII SEMESTER)

22MEOE821

Online Professional Course: The students need to register (anywhere between VI to VIII Semesters) NPTEL Course of 12 weeks duration (3 Credits course) and should pass the examination. The NPTEL Courses relevant to the program and need to be identified by the department and same is to be informed to the students.

Online Open Elective Course: The students need to register (anywhere between VI to VIII Semesters) NPTEL Course of 12 weeks duration (3 Credits course) and should pass the examination. The NPTEL Courses that enables skill enhancements and job opportunities need to be suggested by the department and same is to be informed to the students.

HYDRAULICS AND PNEUMATICS							
Subject Code	22ME71	Credits: 04	CIE: 50				
Number of Lecture Hours/Week	3 (Theory) + 2(Praction	al)	SEE: 50				
Total Number of Lecture Hours	42		SEE Hours: 03				

PREREQUISITE: 1. Fundamental understanding of Physical laws like Pascal's law and others.

- 2. Knowledge of power transmission methods like electrical and mechanical and others.
- 3. Logic thinking capabilities.

COURSE OBJECTIVES:

- 1. The course elaborates principles of Hydraulic and Pneumatic devices.
- 2. Gives an overview of control systems associated with Hydraulic and Pneumatic applications.
- 3. Imparts know how analysis of Circuits for different typical Engineering applications.
- 4. The course gives an insight into the maintenance and troubleshooting aspects of FP Engineering.
- 5. Imports knowledge are logic control devise.

Modules	Teaching Hours
Module-I INTRODUCTION: Introduction hydraulics and pneumatics with basic block diagram	
with advantages, limitations and application, Pascal's law with power transmission and Power	
multiplication, continuity equation, Bernoulli's theorem, Frictional losses in fluid flow (Laminar & turbulent flow and Reynolds number).	8 hrs
HYDRAULIC PUMPS : Introduction to pump, classification of pumps, construction and working principle of 1.Gearpumps: - (Internal pump, External pump, Lobe pump) 2. Vane pumps: -	
(Unbalanced vane pump and Balance vane pump) 3. Piston pumps: - (Axial piston pump,	
Bent Axis type axial pump).	
Module-II	
HYDRAULIC ACTUATORS & MOTORS: Linear actuators:- Hydraulic cylinders (Single acting cylinder, Double acting cylinder and special cylinders, Double rod cylinder,	
Tandem cylinder and Telescopic cylinder) Lever Systems for loading Hydraulic cylinders.	1
Rotary actuators:- Hydraulic motor (gear motor, vane motor and piston motor)	
	9 hrs
HYDRAULIC CONTROL ELEMENTS: Classification of Hydraulic valves.	
Direction control valves :- Valve Representations and symbols, II. valve actuation mechanisms and symbols, Operation of check valves	
(Poppet type check valve, poppet valve with push button actuated, pilot operated check valve)	
and Sliding spool valve (3/2, 4/2, 4/3 spool valves) and Solenoid controlled valve.	
III.Pressure control valves: - Simple pressure Relief valve, compound pressure Relief valve and	
Pressure reducing valve.	
IV. Flow control valves: - Simple needle Valve, Needle valve with integral check valve and	
Pressure compensated flow control valve.	

Module-III	
ANALYSIS OF HYDRAULIC CIRCUITS: analysis of typical hydraulic circuits. Regenerative circuits, Synchronization circuits, and Sequencing circuits, Meter-in, Meter-out and Bleed-off circuits; Fail Safe and Counter balancing circuits.	
HYDRAULIC SYSTEM ACCESSORIES AND MAINTENANCE:	0 1115
Construction of Reservoirs, Construction of Hydraulic Accumulators:- (Dead weight, Spring loaded and gas loaded Accumulators)	
Maintenance of hydraulic system:- Causes of hydraulic system problem, safety considerations and environmental issues.	
Module-IV	
COMPRESSED AIR GENERATION AND PNEUMATIC ACTUATORS: Air compressors, classification(piston type, Screw type, Diaphragm type compressors) stages of air preparation and secondary air treatment Using FRL UNIT Pneumatic actuators:- Linear cylinders(single acting cylinder, Double acting cylinder, Rodless cylinder, Diaphragm cylinder), Seals in air cylinders, Rotary actuators:- Air motor (vane air motor ,Axial piston air motor) PNEUMATIC CONTROL COMPONENTS: Introduction and classification of control elements, Valves, types, constructional details, Symbolic representation, 3/2, 5/2spool valves, Non return	55
Check valve, flow control valve, throttle valve.	
Module-V ANALYSIS OF PNEUMATIC CIRCUITS: Direct and Indirect control of single and double acting cylinders, quick exhaust valve, Speed control ofcylinders using FCV(supply air and exhaust air throttling)	8 hrs
LOGIC CONTROLS: Logic devices, use of logic gates, OR, AND, NANO, NOR in pneumaticapplications, practical examples involving the use of logic gates.	
Question paper pattern: Total of Ten Questions with Two questions from each Module to be set covering the entire syllabus. If questions are to be answered selecting at least one full question from each Module. Each question should not have more than 4 sub divisions.	ive full

Text books:

- 1) Anthony Esposito," Fluid Power with applications", Pearson Education.
- 2) Andrew parr, Hydraulics and Pneumatics, A technician and engineers guide, Butterwortb, Heinemann

Reference Books:

- 1) SR Mujumdar, oil hydraulic systems, principles and maintenance, McGraw Hill Education
- 2) Joji P, Pneumatic Controls, Wiley India Pvt. Ltd.
- 3) Pippenger J J , and R.M. Koff, Fluid Power Control systems, New York: McGraw Hill.

Course outcomes:

On coi	On completion of the course, the student will have the ability to:					
CO#	Course Outcome (CO)					
	Describe the hydraulic and pneumatic system with Basic governing law for fluid Power and Differenttype of pump.					
CO2	Illustrate the hydraulic actuators and control elements of hydraulic system.					
CO3	Analysis of the hydraulic circuits and Accessories in hydraulic system.					
CO4	Describe the compressed air generation, pneumatic actuators and pneumatic control components.					

PREREQUISITE:

- 1. The student should know the fundamentals hydraulics and pneumatics systems.
- 2. Should aware of power transmission methods like electrical and mechanical.
- 3. Should have profound knowledge of safety.

COURSE OBJECTIVES:

- 1) To describe the performance and operating characteristics of hydraulics and pneumatics systems.
- 2) To explain the different types and complete knowledge of control elements.
- 3) To explain the parts and complete knowledge of actuators & motors.
- 4) To build a manual operated hydraulics and pneumatics circuits.
- 5) To build an Electro- hydraulics and Electro- pneumatics circuits.

HYDRAULICS AND PNEUMATICS LAB

Modules

Module-I

Analysis of hydraulic circuits:

- 1) To Analysis the working of double acting cylinder in hydraulic system. **Electro** hydraulics
- 2) To Analysis the flow control by METER-IN circuits, using 4/2 in hydraulic system.
- 3) To Analysis the flow control by METER-OUT circuits, using 4/2 in hydraulic system.
- 4) To Analysis the application of 4/3 (Tandem and closed centre) directional control valve.

Analysis of pneumatic circuits:

- 1) To Analysis the controlling of pneumatic cylinders by DIRECT control of single and double acting cylinder.
- 2) To Analysis the controlling of pneumatic cylinders by INDIRECT control of single and double acting cylinder.
- 3) To Analysis the speed control of pneumatic cylinders by supply air and exhaust air throttling of double acting cylinder.
- 4) To Analysis the application of 4/3 (Tandem and closed centre) directional control valve. **Electro pneumatics**
- 5) To Analysis the control of single acting cylinder with 3/2 single solenoid valve.
- 6) To Analysis the control of double acting cylinder with 4/2 double solenoid valve.

COMPUTER INTEGRATED MANUFACTURING(CIM)								
Subject Code	22ME72	Credits: 04	CIE: 50					
Number of Lecture Hours/Week	3 (Theory) + 2	2(Practical)	SEE: 50					
Total Number of Lecture Hours	42		SEE Hours: 03					

PREREQUISITE:

- 1. Fundamental knowledge of Design and Manufacturing processes
- 4. Familiarity with CAD/CAM software tools for product design and development
- 5. Basic programming and logical reasoning skills

COURSE OBJECTIVES:

- 6. To understand the concept key components (hardware and software) of CIM systems and their integration in modern manufacturing environments.
- 7. To develop knowledge of Finite Element Modeling (FEM), CNC machines, and part programming techniques for turning, milling, and drilling operations.
- 8. To analyze and model automated production systems, including material handling, storage systems, inspection and flow lines for high-volume manufacturing.
- 9. To study computerized planning and quality control systems, including CAPP, MRP, Group Technology, and modern inspection methods.

and modern inspection methods.	
Modules	Teaching Hours
Module-I	
COMPUTER INTEGRATED MANUFACTURING: Introduction of CIM, CIM hardware and software, Role of the Elements of CIM system, Product development cycle, Sequential and concurrent engineering, Soft and hard prototyping. FINITE ELEMENTAL MODELING AND ANALYSIS IN CIM: Introduction, General steps involved in	8 hrs
FEM, Types of analysis, element and load types, simple numerical problems.	
Module-II COMPUTER NUMERICAL CONTROL: Basic components of NC, Concepts of CNC, DNC, machining centers and their advantages. CNC tooling, turning tool geometry, milling tooling system, tool presetting, work holding devices. CNC PROGRAMMING: Steps involved in development of a part program, Manual part programming for turning, milling and drilling operations.	9 hrs
Module-III HIGH VOLUME PRODUCTION SYSTEM: Work part transport - continuous, Intermittent, synchronous .Transfer mechanisms -linear-Walking beam, roller, Chain drive, Rotary -Rack and pinion, ratchet and pawl, Geneva wheel. Buffer storage, control functions. ANALYSIS OF AUTOMATED FLOW LINE: General terminology and analysis, Analysis of transfer line without storage, upper bound approach, lower bound approach, analysis of transfer lines with storage buffers and simple problems.	9 hrs

	Module-IV	
	ATED MATERIAL HANDLING AND STORAGE: Material handling functions, overview of material	
	g equipment, Material handling analysis, Design of system, conveyor system, automated guided	
	system, automated storage/ retrieval systems, carousel storage systems, Work in process	
storage		8 hrs
	Ited Inspection Systems: Overview of Automated Identification Methods, Bar Code Technology D, Other Automatic Identification and Data Capture (AIDC) Technologies.	
	Module- V	
COMPU	TERIZED MANUFACTURING PLANNING SYSTEM: Computer-aided process planning: retrieval	
and gen	erative type, material requirement planning, Capacity planning, Group technology: part family,	8 hrs
parts cla	assification and coding system.	
COMPL	JTER AIDED QUALITY CONTROL: Inspection methods, non-contact inspection methods, machine	
vision sy	stem, optical inspection method, coordinate measuring machine, computer aided testing.	
Questio	n paper pattern:	
	of Ten Questions with two from each MODULE to be set covering the entire syllabus.	
	ull questions are to be answered choosing at least one from each MODULE.	
	question should not have more than 4 sub divisions.	
Text bo	oks:	
1. A	utomation, Production Systems and Computer-Integrated Manufacturing. Mikell P Groover 4th	
Edit	ion, 2015. 2. CAD / CAM Principles and Applications P N Rao Tata McGraw-Hill 3rd Edition, 2015.	
	CAD/CAM/CIM Dr. P. Radhakrishnan New Age International Publishers, New Delhi. 3rd edition	
Referen	ce Books:	
1. CAD/0	CAM -Zimmers & Grover-PHL	
2. CAD/	CAM zeild-Mc-Graw Hill-2005.	
	outcomes:	
On com	pletion of the course, the student will have the ability to:	
CO#	Course Outcome (CO)	
CO1	Evaluate the implementation of CIM in manufacturing and analysis.	
CO2	Describe the concept of CNC and being able to develop part programs for simple jobs	
CO3	Analyse the various transfer techniques and investigate the automated flow lines.	
CO4	Recognise different material handling ,storage systems and inspection system.	

CO5 Learn modern manufacturing trends such as CAPP, GT, and CAQC.

PREREQUISITE: Manufacturing Processes, CAD/CAM, Machine Tools

COURSE OBJECTIVES:

- 1. To explore the fundamental concepts of CNC simulation and learn to use CAM software for designing and generating CNC codes for simple components.
- 2. To develop proficiency in using G-codes and M-codes on CNC simulator software for turning and milling operations.
- 3. To understand and practice writing G-code and M-code programs for CNC turning and milling operations to produce specified components.

Modules

Module-I

CNC Simulation: (Individual execution)

- 1. Introduction to G-codes and M-codes for milling operations.
- 2. Simulation of milling operations involving linear and circular interpolation.
- 3. Introduction to G-codes and M-codes for turning operations.
- 4. Simulation of turning operations such as facing, step turning, taper turning, chamfering, and filleting.

Module-II

CNC Machine Programming & Job Production :(Group execution)

- 1. Writing and executing CNC programs using G-codes and M-codes for CNC turning.
- 2. Feeding the program into the CNC turning machine, setting tool offsets, and producing the job.
- 3. Writing and executing CNC programs using G-codes and M-codes for CNC milling.
- 4. Feeding the program into the CNC milling machine, setting up the job, and producing the component.

Professional core course (PCC)

ENERGY ENGINEERING					
Subject Code	22ME73	Credits: 04	CIE:50		
Hours/Week	4 (Theory)		SEE:50		
Total Number of Lecture Hours	52		SEEHours:03		

Prerequisite: The Energy Engineering major interweaves the fundamentals of classical and modern physics, chemistry, and mathematics with energy engineering applications.

Course Objectives:

- 1. To Define and understand steam power plant machinery and process.
- 2. To understand the functioning of boiler accessories, natural, forced and balanced draft systems.
- 3. To understand the diesel engine power plant accessories and layout.
- 4. To Define and understand the cogeneration, hydroelectric, gas turbine power plants, accessories and Layouts.
- 5. To Define and understand nuclear power plant fundamentals, nuclear fuels-use and disposal of nuclear waste.
- 6. To Understand and analyze the power plant economics as well as performance.

Modules	Teaching Hours
Module–I Steam Power Plant: Layout of steam power plant, different types of fuels used for steam generation, Equipment of burning (overfeed and underfeed stokers), Burners (long flame, turbulent flame, tangential, cyclone burners), unit system and bin system. Pulverized fuel furnaces (No numerical). Coal, Ash Handling and Different Types of Boilers: Coal and Ash handling, Generation of steam using forced circulation, high and supercritical pressures, A brief account of LaMount, Benson, Velox, and Loeffer steam generators (No numerical).	08 Hours
Module—II Chimneys: Types of chimneys (Natural, forced, induced and balanced draft) Calculations involving height of chimney to produce a given draft (Numerical). Accessories for the Steam Generator Cooling Towers and Ponds: Air Pre-heaters Study of different types of cooling towers and ponds. Accessories for the Steam Generator such as super-heaters, de-super heater, Re heaters, Economizers (No numerical).	08 Hours
Module–III Diesel Engine Power Plant: Layout of a diesel power plant. Method of starting diesel engines, cooling and lubrication system for the diesel engine. Filters, centrifuges, Oil heaters, Intake and exhaust system. Advantages and disadvantages of the diesel power plant. (No numerical) Nuclear Power Plant: Principles of release of nuclear energy fusion & fission reactions. Nuclear fuels used in the reactors. Radiation hazards, Shielding, Radioactive waste disposal, Nuclear reactors and its types (PWR,BWR,HGR,GCR,LMCR,Fast Breeder reactor)Site selection criteria area. (No numerical).	08 Hours

Module-IV	
Hydro-Electric Plants:	
Storage and pondage, flow duration and mass curves, hydrographs, Low, medium and high head plants, pumped storage plants, Penstock, water hammer, surge tanks, gates and valves, powerhouse, general layout. A brief description of some of the important Hydel Installations in India (Numerical).	09 Hours
Gas Turbine Power Plant: Advantages & Disadvantages of the gas turbine plant, Open & closed cycle turbine plants with the accessories. Multi stage expansion and multi stage compression Different methods of improving efficiency (Reheat regeneration and inter cooling) (No numerical)	
Module–V	
Choice of Site for Power Station: Load estimation, load duration curve, load factor, capacity factor, use factor, diversity factor, demand factor, Effect of variable load on power plant, selection of the number and size of units (Numerical). Economic Analysis of Power Plant: Cost of energy production, selection of plant and generating equipment, performance and operating characteristics of power plants, tariffs for electrical energy (Numerical).	09 Hours

- 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- 2. Five full questions are to be answered choosing at least one from each MODULE.
- 3. Each question should not have more than 4 sub divisions.

Text books:

- 1. Power plant Engineering ,P.K Nag, Tata McGraw Hill.
- 2. Power Plant Engineering, Er. R.K Rajput Laxmi Publications(P) Ltd. New Delhi.
- 3. Power Plant Engineering, G.R.Nagpal, Khanna Publishers, 2006

Reference Books:

- 1. Power plant Engineering, F.T Morse, Van Nostrand.
- 2. Power Plant Engineering, Dhomakundawar, Dhanpath Rai sons. 2003
- ${\it 3. } Power Plant Technology, M.M. Wakil, Tata McGraw Hill Publishers, 2nd Edition$

At the end of the course students will be able to:

СО	Course Outcomes
CO1	Identify and choose the various components needed for a steam power plant.
CO2	Interpret the various accessories and auxiliaries for steam power plants.
CO3	Choosethedieselengineandnuclearpowerplantfundamentalsrequiredforthegeographical area.
CO4	Analyze power plant layout for a hydroelectric and gas turbine power plant.
CO5	Predict the usage of base load and peak load plant and analyze, Interpret the power Plant economics and recommend solutions.

Professional Elective course				
	ADVANC	ED FOUNDRY TEC	CHNOLOGY	
Subject Code	22ME741	Credits	03	CIE:50
Number		-	•	
of Lecture	3(Theory)			SEE:50
Hours/Week Total Number of				SEE
Lecture Hours	42			Hours:03
Prerequisite: Man Foundry practices of r	<u> </u>	s and materials scie	nce knowledge, basic	
Course Objectives:				
1. To promote unde	erstanding of foundr	y practice and metal	casting as one of the	
important manufact	uring processes.			
2. Tostudythevariou	ustechniquesusedin	foundryindustriesand (theirapplications.	
3. Understand the s	tandard foundry pra	actices for casting of f	errous and non-ferrous	
alloys elaborated acc	cording to specializa	tion.		
4. Anoverviewofthe	designingofmolds,ca	astingdefects,inspecti	onandtestingof	
Casting sand moderni	zation of foundries			
	M	lodules		Teaching Hours
	N	10DULE-I		
Introduction of foundry: History, Types of Manufacturing process, principles of				
foundry, Types of foundries, Different sections of foundry and its layout. Foundry materials: Types of raw materials.				08Hours
Introduction and Technology of Pattern making: Definition, pattern materials, types				
of patterns, pattern a		making. Dermicion,	pattern materials, types	
	M	IODULE-II		
Technology of Mould	making: Mould mat	erials, sand preparation	on, Properties of moulding	
materials, steps involve		•		08Hours
Greensandmoulding,drysandmoulding,shellmoulding,Sodiumsilicatemolding,				
no-bake moulding, Plaster moulding, Vacuum sealed moulding (V process). MODULE-III				
Melting and Pouring:			nearth furnace, acidic	
and basic hearth furna		,	,	
la a	temperatures noi		ring ladles Gates	
Metal Pouring: Pouring	g temperatures, pot	aring equipment, pour	ing ladies, dates,	
Risers, Chvorinov's rule	e, risers feeding dist	ance, sprues and thei	r characteristics.	09Hours
Risers, Chvorinov's rule Solidification of castir	e, risers feeding dist ngs: Concept of soli	ance, sprues and thei dification of metal, s	r characteristics. olidification of pure metals-	09Hours
Risers, Chvorinov's rule Solidification of castir nucleation, heterogene	e, risers feeding dist ngs: Concept of soli eous-nucleation, sol	ance, sprues and thei dification of metal, s idification rate, time a	r characteristics. olidification of pure metals- and Chvorinov's rule-	09Hours
Risers, Chvorinov's rule Solidification of castir nucleation, heterogene	e, risers feeding dist ngs: Concept of soli eous-nucleation, sol	ance, sprues and thei dification of metal, s idification rate, time a control of solidification	r characteristics. olidification of pure metals-	09Hours
Risers, Chvorinov's rule Solidification of castir nucleation, heterogene Progressive, directiona	e, risers feeding dist ngs: Concept of soli eous-nucleation, sol I solidification and o	ance, sprues and thei dification of metal, s idification rate, time a control of solidification MODULE-IV	r characteristics. olidification of pure metals- and Chvorinov's rule- n to obtain sound castings.	09Hours
Risers, Chvorinov's rule Solidification of castir nucleation, heterogene	e, risers feeding dist ngs: Concept of soli eous-nucleation, sol I solidification and c es: Introduction-Specia	ance, sprues and thei dification of metal, s idification rate, time a control of solidification MODULE-IV al casting techniques-Per	r characteristics. olidification of pure metals- and Chvorinov's rule- n to obtain sound castings. rmanent mould casting,,	09Hours
Risers, Chvorinov's rule Solidification of castir nucleation, heterogene Progressive, directiona Special casting Technique pressure die casting, ce advantages, disadvanta	e, risers feeding dist ngs: Concept of soli eous-nucleation, sol I solidification and constitution es: Introduction-Special ntrifugal casting, Squages and application	ance, sprues and thei dification of metal, s idification rate, time a control of solidification MODULE-IV all casting techniques-Perueeze casting, compares.	r characteristics. olidification of pure metals- and Chvorinov's rule- n to obtain sound castings. rmanent mould casting,, rison with sand casting,	
Risers, Chvorinov's rule Solidification of castir nucleation, heterogene Progressive, directiona Special casting Technique pressure die casting, ce	e, risers feeding dist ngs: Concept of soli eous-nucleation, sol I solidification and constitution es: Introduction-Special ntrifugal casting, Squages and application	ance, sprues and thei dification of metal, s idification rate, time a control of solidification MODULE-IV all casting techniques-Perueeze casting, compares.	r characteristics. olidification of pure metals- and Chvorinov's rule- n to obtain sound castings. rmanent mould casting,, rison with sand casting,	09Hours 08Hours

MODULE-V

Fettling technique: Introduction of shake out, modern developments, Fettling or cleaning, and finishing of castings, removal of cores, cleaning casting surfaces, blast cleaning, removal of gates, risers, fins and other unwanted projections from castings.

09Hours

Casting Defects: causes and remedial measures, porosity, Shrinkage cavity, inclusions, hot tears, rat tail, sand fusion, mis-run, cold shut, Fins.

Question paper pattern:

- 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- 2. Five full questions are to be answered choosing at least one from each MODULE.
- 3. Each question should not have more than 4 sub divisions.

Textbooks:

- $1.\ O.P. Khanna, \textit{``ATextBookofFoundryTechnology''}, Dhanpat Rai \& Sons, 15^{th} Edition, 2011.$
- 2. P.N.Rao, "ManufacturingTechnology", TMH, 5th Edition, 2013.

Reference Books:

- 1. Richard.W.HeineandRosenthal, "Principles of Metal Castings", TMH, 2nd Edition, 2001.
- 2. R.K.Jain, "ProductionTechnology", KhannaPublishers, 17thEdition, 2011.

Ebooks and online course materials:

Course outcomes: On completion of the course, the student will have the ability to:

СО	Course Outcomes
CO1	Detect the material to prepare pattern sand moulds
CO2	Explains and preparation, reclamation, control tests and various types of moulding
соз	Design gating systems and calculate solidification time.
CO4	Selectmeltingfurnacesandladles,non-destructivemethodsusedincastings
CO5	Identify defects, salvage and heat treatment of castings

CRYOGENICS				
Subject Code	22ME742	Credits	03	CIE:50
Number of Lecture Hours/Week	3(Theory)	1		SEE:50
Total Number of Lecture Hours	42			SEE Hours: 03
Prerequisite:				
Course Objectives: 1. To understand cryogenic system 2. To analyze gas cycle cryogenic r 3. To Comprehend gas separation 4. To have detailed knowledge of liquids 5. To study applications of cryogen	efrigeration syste and gas purificati vacuum technolog	m on system gy, insulation, sto		
	Modules			Teaching Hours
Introduction to Cryogenic Systems: Cryogenic propellants and its applications, liquid hydrogen, liquid nitrogen, and liquid Helium. The thermodynamically Ideal system Production of low temperatures – Joule Thompson Effect, Adiabatic expansion. Gas Liquefaction Systems: Liquefaction systems for Air Simple Linde –Hampson System, Claude System, Heylndt System, Dual pressure, Claude. Liquefaction cycle Kapitza System. Comparison of Liquefaction Cycles Liquefaction cycle for hydrogen, helium and Neon, Critical components of liquefaction systems.			08Hours	
	MODULE-II			
Gas Cycle Cryogenic Refrigeration Systems: Classification of Cryo coolers, Stirling cycle Cryo – refrigerators, Ideal cycle – working principle. Schmidt's analysis of Stirling cycle, Various configurations of Stirling cycle refrigerators, Integral piston Stirlingcryo-cooler, Free displacer split type StirlingCryo coolers, Gifford McmahonCryo- refrigerator, Pulse tube refrigerator, Solvay cycle refrigerator, Vuillimier refrigerator, Cryogenic regenerators.			08Hours	
Can Camanutia and Can Date	MODULE-III	Theorem	ideal !!	
Gas Separation and Gas Purific system, Properties of mixtures, P separation. Linde double column a	rinciples of gas s	eparation, Linde	single column air	08Hours
Ultra Low Temperature Cryo – R Dilution refrigerator. Pomerand temperatures, Temperature m thermometers, Thermocouples, Tl	chuk cooling. Neasurement at	Measurement s low temperat	ystems for low tures, Resistance	

MODULE-IV	
Vacuum Technology: Vacuum Technology: Fundamental principles. Production of high vacuum, Mechanical vacuum pumps, Diffusion pumps, Cryo-pumping, Measurement of high vacuum level. Cryogenic Insulation: Heat transfer due to conduction, Evacuated porous insulation Powder & Fibers Opacified powder insulation, Gas filled powders & Fibrous materials Multilayer super-insulation, Composite insulation	08Hours
MODULE-V Cryogenic Fluid Storage And Transfer Systems: Design of cryogenic fluid storage vessels, Inner vessel, Outer Insulation, Suspension system, Fill and drain lines. Cryogenic fluid transfer, External pressurization, Self pressurization, Transfer pumps. Application of Cryogenic Systems: Cryogenic application for food preservation – Instant Quick Freezing techniques Super conductive devices, Cryogenic applications for space technology. Application of cryognic systems, super conducting devices, space technology, cryogenic in biology and medicine.	10Hours

- 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- 2. Five full questions are to be answered choosing at least one from each MODULE.
- 3. Each question should not have more than 4 sub divisions.

Textbooks:

- 1. Cryogenic Systems-R.F. Barron
- 2. CryogenicEngineering—R.B.Scott—D.VanNostrandCompany,1959

Reference Books:

- 1. Cryogenic Process Engineering –K.D.TimmerhausandT.M.Flynn,PlenumPress,NewYork,1989
- 2. High Vacuum Technology—A.Guthree—New Age International Publication
- 3. ExperimentalTechniquesinLowTemperaturePhysics-G.K.White-OsfordUniversityPress,

E books and online course materials:

Course outcomes:

	CO	Course Outcome(CO)
	CO1	To be able to understand the cryogenic system.
CO2 To have complete knowledge of cryogenic refrigeration system CO3 To be able to design gas separation and gas purification system		To have complete knowledge of cryogenic refrigeration system
		To be able to design gas separation and gas purification system
	CO4	To be able to solve the problem in, insulation, storage of cryogenic liquids
	CO5	To be able to apply cryogenic in various areas, and to be able take up research in cryogenics

	NAN	O TECHNOLOGY		
Subject Code	22ME743	Credits	03	CIE:50
Number of Lecture Hours/Week	3(Theory)			SEE:50
Total Number of Lecture Hours	42			SEE Hours:03
Prerequisite: Mate	rial science.			
Course Objectives In this course students materials, and their en	will learn about the l	pasics of nano scale sciences s and hazards.	e, types of	
	Mod	ules		Teaching Hours
	MOD	ULE-I		
and interdisciplinary Rechard Feynman, scie Atomic structure, Bohr	nature of nano-scientific revolutions. Na atomic model, mole	ANO TECHNOLOGY: Historence and nanotechnology ano-size effect on surface ecules and phases. Introductance of nano scale materi	y, challenges of to volume ratio. action to classical	08Hours
MODULE-II CLASSIFICATION OF NANO STRUCTURES: Zerodimensional, one-dimensional and two dimensional nanostructure materials - classification of solids: conductor, semiconductors, insulator, types of semiconductor, doping, diodes, current flow in semiconductors, ceramics and nano composites, quantum size effect (QSE) in 1D, 2D, 3D nano materials, quantum dots, nano wires, nano tubes, nano sheets, top down and bottom up approach.			08Hours	
	MODU	JLE-III		
BIOMIMETICS AND BIOMATERIALS: Biomimetics: Introduction, Industrial significance, Lessons from nature and applications, overview of various objects from nature and their selected functions, Lotus effect, Velcro effect, biologically inspired mechanisms, Biologically inspired structures and tools, biological materials. Biomaterials: Introduction, Classification of Biomaterials, Biomaterials as implant in human body, characterization of biomaterials.			08Hours	
		ODULE-IV		
INTRODUCTION TO NANOMATERIALS AND DEVICES: Types of nano materials: Metal nanoparticles eg Au, Ag, Cu, Pt and their application as FETs. Metal oxide nanoparticles TiO2, ZnO, SnO2 and their application in solar cells, MEMS based gas sensors, Semiconducting Cadmium and Selenide quantum dots bio imaging, Carbon based nano materials and their applications in FETs, MOSFETS, sensors and actuators, Silicon based nanostructures and their application in single electron electronics used as tips for AFM and Field emission microscopy, magnetic and ceramics nano materials And their application.			10Hours	
		ODULE-V		
Environment - Toxicology	y of Airborne – Effect	o materials pollution – Nan of Nano materials in the er ing, storage, packaging, tra	nvironment.	08Hours

- 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- 2. Five full questions are to be answered choosing at least one from each MODULE.
- 3. Each question should not have more than 4 sub divisions.

Textbooks:

- 1. Edward L. Wolf, "Nanophysics and Nanotechnology An Introduction to Modern Concepts in Nanoscience" Second Edition, John Wiley & Sons, 2006.
- 2. Foundations of Nanoscale Science and Technology, Shareefraza J. Ukkund, Prasad Puthiyillam, LAP-Lambert Academic Publishing, Mauritius, 2018. ISBN: 978-613-958649-3 Nanotechnology Basic Science & Emerging Technologies: 2002 by Michael Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, and Burkhard Raguse.
- 3. Nanoparticles technology: Masuo Hosokawa, Kiyoshi Nogi, Makio Naito, Toyokazu Yokoyama, First edition 2007, ISBN: 978-0-444-53122-3.

Reference Books:

- 1. VladimirP.Torchilin(2006)Nano particulates as Drug Carriers, Imperial College Press.
- 2. M.RezaMozafari(2007)Nano materials and Nano systems for Biomedical Applications.
- 3. K.W.Kolasinski, "Surface Science: Foundations of Catalysis and Nano science", Wiley, 2002.
- 4. Biomimetics: lessons from nature—an overview by Bharath bhushan
- 5. Biomimetics—using nature to inspire human innovation Yoseph Bar-Cohen.

Ebooks and online course materials:

Course outcomes: On completion of the course, the student will have The ability to:

CO	Course Outcome(CO)		
CO1	Describe fundamentals of nano science and nanotechnology		
CO2 Classify nano-structures;			
CO3 Develops mart materials			
CO4 Analyse biomaterials			
CO5	Explain nano toxicology		

PROJECT MANAGEMENT						
Subject Code	22ME744	Credits: 03	CIE:50			
Number of Lecture Hours/Week	3 (Theory)	SEE:50				
Total Number of Lecture Hours 42		SEEHours:03				

Prerequisites of the course:

Student should have knowledge of Operations Management and Basic knowledge of accounting

Course Objectives:

- 1. To make them understand the concepts of Project Management for planning to execution of projects.
- 2. To make them understand the feasibility analysis in Project Management and network analysis tools for cost and time estimation.
- 3. Make them capable to analyze, apply and appreciate contemporary project management tools and methodologies in Indian context.

tools and methodologies in Indian context.	
MODULES	Teaching Hours
MODULE	Hours
MODULE-I CONCEPTS OF PROJECT MANAGEMENT: concepts of project, categories of project, phase of project life cycle, role and responsibilities of project leaders, tool and techniques for project management. PROJECTPLANNING: feasibility report phased planning, project planning steps, objectives and the goals of the project. MODULE-II ESTIMATING: preparation of cost estimation, evaluation of the project profitability, financial analysis.	08 Hours
PROJECTORGANIZING: project organization and types, accountability in project organization.	Hours
MODULE-III	
STAFFING THE PROJECT TEAM: skills /abilities required for project manager, authorities and responsibilities of project manager, tendering and selection of contractors. PROJECT SCHEDULING: project implementation scheduling, effective time management, and different scheduling and resources allocation methods, Machine loading and sequencing: Johnson's rule	08 Hours
MODULE-IV TOOLS AND TECHNIQUES OF PROJECTS MANAGEMENT: bar chart (Gantt chart), bar chart for combined activates, logic diagrams and networks, project evaluation and review techniques (PERT), planning computerizes project management. CO-ORDINATION AND CONTROL: Project Direction communication in a project, MIS project co-ordination, project controls requirement for project or role of MIS in project controls, performance controls, schedule control, cost controls,	09 Hours
MODULE-V PERFORMANCE MEASURES & NETWORK ANALYSIS: Performance Indicators, Network analysis and network diagram, Computation of project completion time (Forwardpass and backward pass), CPM, Computation of float, Difference between PERT and CPM, Probabilistic time estimates, probability of project completion by a target date.	10 Hours

Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.

Five full questions are to be answered choosing at least one from each MODULE.

Each guestion should not have more than 4 sub divisions.

Textbooks:

- 1. ChaudharyS.;ProjectManagement,TataMcGrawHill
- 2. PrasannaChandra;Projects-Planning,Analysis,Selection,Financing,ImplementationandReview', I Edition, Tata Mc Graw Hill, 8th Edition 2015.

Reference Books:

- 1. KerznerH.;Project Management, II Edition, CBS Publishers
- 2. MeredithJackR.,MantelSamuelJ.;ProjectManagement,IVEdition,JohnWiley&Sons
- 3. GopalakrishnanP.,RamamurthyV.E;TextbookofProjectManagement,MacMillanPublishers
- 4. Maylor Harvey, Project Management, MacMillan Publishers
- 5. MatheenA.Prof., Comprehensive Project Management, Laxmi Publications(P) Ltd.
- 6. Project Management, Gopalan, Wiley India
- 7. A Guide to the Project Management Body of Knowledge (PMBOKGuide), 5thEd, Project Management Institute PA, USA
- 8. Project Management, Dennis Lock, 9th Edition, Gower Publishing England

Course outcomes: On completion of the course, the student will have the ability to

COs	Course Outcomes
CO1	Describe and identify the projects of different categories, phases of product lifecycle, tools and techniques for project management.
CO2	Organize the staff and prepare project teams and define the goals of the project and understand the concepts of project planning and estimation.
соз	Schedule the project, identify the performance indicators and measure the performance of a project.
CO4	Co ordinate and control the project activities.
CO5	Write work break down structure for a project and develop a schedule based on it.

Open Elective course

NON-CONVENTIONAL ENERGY SOURCES						
Subject Code	ubject Code 22ME73OE751 Credits:03 CIE:50					
Number of Lecture Hours/Week	3 (Theory)		SEE:50			
otal Number of ecture Hours 42		SEEHours:03				

Prerequisite: Should have knowledge of energy sources and their utilization.

Course Objectives:

- 1. Understand energy scenario, energy sources and their utilization.
- 2. Learn about energy conversion methods and their analysis.
- 3. Study the principles of renewable energy conversion systems.
- 4. Understand the concept of green energy and zero energy.

Modules	Teaching Hours
MODULE-I	1100.10
Introduction:	
EnergySource,India'sproductionandreservesofcommercialenergysources,needfornon-	
conventional energy sources, energy alternatives, solar, thermal, photovoltaic, water power,	
wind, bio-mass, ocean temperature difference, tidal and waves, geothermal, tar-sands and	
oil shale, nuclear (Brief description); advantages and disadvantages, comparison (Qualitative	
and Quantitative).	09
Solar Radiation:	Hours
Extra—Terrestrial radiation, spectral distribution of extraterrestrial radiation, solar constant,	
solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation	
data.	
Measurement of solar radiation: Pyrometer, shading ring pyrhelio-meter, sunshine recorder,	
schematic diagrams and principle of working.	
MODULE-II	
Photovoltaic Conversion:	
Description, principle of working and characteristics, applications. Solar Thermal Conversion:	
Collection and storage, thermal collection devices, liquid flat plate collectors, solar air	09
heaters concentrating collectors (cylindrical, parabolic) sensible heat storage, latent heat	Hours
storage, application of solar energy water heating. Space heating and cooling, active and	
passive systems, power generation, and refrigeration. Distillation solar pond, principle of	
working, operational problems.	
MODULE-III	
Wind Energy	
Propertiesofwing, availability of windener gyin India, windvelocity and power from wind; major	
problems associated with wind power, wind machines; Types of wind machines and their	
characteristics, horizontal and vertical axis wind mills, elementary design principles;	08
coefficient of performance of a wind mill rotor, aerodynamic considerations of wind mill	Hours
design.	
Tidal Power:	
Tides and waves as energy suppliers and their mechanics; fundamental characteristics of	
tidal power, harnessing tidal energy, limitations.	

MODULE-IV	
Ocean Thermal Energy Conversion: Principle of working, Rankine cycle, OTEC power stations in the world, problems associated with OTEC. Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy.	08 Hours
MODULE-V Energy From Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages. Hydrogen Energy: Properties of Hydrogen with respect to its utilization as a renewable from of energy, source of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production and bio-chemical production. Storage and Transportation Methods: Gaseous, cryogenic and metal hydrides, application of hydrogen, domestic and industrial safe burning of hydrogen.	08 Hours

- $1. \ Total of Ten Questions with two from each MODULE to be set covering the entire \ syllabus.$
- 2. FivefullquestionsaretobeansweredchoosingatleastonefromeachMODULE.
- 3. Eachquestionshouldnothavemorethan4sub divisions.

Text books:

- 1. G.DRaiK,—Nonconventionalenergysources||,Khannapublishers.2004,ISBN:9788174090737
- 2. Subhas P.Sukhatme, J K Nayak, —Solar energy||, Tata Mc Graw Hill,India 3rd Edition. 2009, ISBN: 9780070142961

Reference Books:

- 1. N.K.Bansal, Manfred Kleemanand Mechael Meliss,—Renewable energy sources and conversion technology||, Tata Mcgraw Hill, 2001. ISBN:9780074600238
- 2. JohnW.Twidell,TonyWeir,—Renewableenergyresources||,Routledge,4thedition,2014, ISBN:9780415633581
- 3. SolarPowerEngineering:PKNagTMH.2003

Course outcomes:

СО	Course Outcome (CO)
CO1	Students will be able to study concepts of various renewable energy systems
CO2	Identify renewable energy sources and their utilization
CO3	Discuss the basic concepts of solar radiation and analyze the working of solar PV and thermal systems.
CO4	Explain principles of energy conversion from alternate sources including wind, geothermal, ocean, biomass, bio gas.
CO5	Implement the concepts and applications of fuel cells, thermo electric converter and MHD generator methods of energy storage for specific applications.

	Open El	ective				
RAPID PROTOTYPING AND MODELLING						
Subject Code	22MEOE752	Credits	03	CIE:50		
Number of Lecture Hours/Week	3(Theory)			SEE:50		
Total Number of Lecture Hours	42			SEE Hours: 03		
Prerequisite:						
Course Objectives: 1. Understand technology used in r 2. Recognized importance of rapid 3. Acquire knowledge, techniques a and tooling process. 4. Comprehend the potential of rap sectors.	prototyping in adv and skills to select	ance manufact relevant rapid p	orototyping			
5. Illustrated 3D printing technolog	y for Rapid prototy	ping and Mode	eling			
	Modules			Teaching Hours		
Introduction:	MODULE-I					
Evolution, basic principle, concept, procedure and need of rapid prototyping and tooling, Classification of rapid prototyping and tooling processes (Additive/Subtractive/Deformative), Classifications of materials used for Rapid prototyping and tooling, Industrial applications of rapid prototyping and tooling, Most commonly used processes for rapid prototyping.				08Hours		
	MODULE-II					
Processes used for rapid prototyping and modeling: Stereolithography Apparatus (SLA), Fused Deposition Modeling (FDM), Selective Deposition Lamination (SDL), Laminated Object Manufacturing (LOM), Ultrasonic Consolidation, Laser Engineered Net Shaping (LENS), Electron Beam Free Form Fabrication (EBFFF), Selective Laser Sintering (SLS), Electron Beam Melting (EBM). Convectional Tooling vs Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect rapid tooling methods.				10Hours		
	MODULE-III					
CAD for rapid prototyping and modeling: Preparation of 3D-CAD model in STL format, Reverse engineering, Reconstruction of 3D CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and generation of codes for tool path.				08Hours		
	MODULE-IV	1				
Constructions of manipulator syst Axes, Linear motion guide ways, Ba scales, Process Chamber, Safety in Material delivery systems.	all screws, Motors,	Bearings, Enco	ders/ Glass	08Hours		
	MODULE-V					
Post processing in rapid prototyp Support material removal, Surface Aesthetic improvement, Property of techniques.3Dprinting:Introduction Disadvantages.	texture improvemenhancements usi	ng non-thermal	and thermal	08Hours		

- 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- 2. Five full questions are to be answered choosing at least one from each MODULE.
- 3. Each question should not have more than 4 sub divisions.

Textbooks:

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010.
- 2. GebhardtA., "Rapidprototyping", HanserGardenerPublications, 2003.
- 3. IanGibson, "SoftwareSolutionsforRapidPrototyping", ProfessionalEngineeringPublishingLimited, UK, 2002.

Reference Books:

- 1. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A toolbox for prototype development", CRC Press, 2007.
- $2.\ Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.$
- 3. Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRC press, 2000.

Ebooks and online course materials:

Course outcomes:

	CO	Course Outcome(CO)
	CO1	Explain rapid prototyping and tooling for manufacturing complex geometries.
CO2 Identify and solve problems related to rapid prototyping and modeling		
COA. Distinguish ted		Select suitable process and materials for rapid prototyping and modeling
		Distinguish technique of CAD and reverse engineering for geometric transformation in rapid prototyping and modeling.
	CO5	Determine part orientation, apply suitable slicing algorithm and generate tool path for minimum build time.

Open Elective Course TOTAL QUALITY MANAGEMENT						
Subject Code	22MEOE753	Credits	03	CIE:50		
Number of Lecture Hours/Week	3(Theory)	,		SEE:50		
Total Number of Lecture Hours	42			SEE Hours: 03		
Prerequisite: Student sh men, machine, materials.	ould have knowledge	e of production pro	ocess, utilization of			
 The aim of course to precontribution of Gurus. Students learn role and Selectively choose Tool To study product accep 	Course Objectives: 1. The aim of course to provides the knowledge of TQM, Benefits of TQM, and					
	Module	es		Teaching Hours		
Overview of Total Qualice Contribution Of quality Government TQM organization.	08Hours					
Tools and techniques of benchmarking, processes quality management sys documentation of ISO_90	09Hours					
Product acceptance cont sampling plan. Military S coverage with numerical product roman system: Sitables. Preventive techniques: D FMEA.	10Hours					
Quality Circles: Introduct circles, TheoryX, TheoryX operation of quality cortechniques).	07Hours					

Experimental	Design:	Introduction,	Design	Matrix,	Design	matrix	for	two
level(lowerandUpper)orthreelevel(Middle),Basicsstatistics,Onefactordesign, two						two		
factor designs, t-test, F-test, Analysis of variance (Note: F _{model} >F _{table} hence the model								
is adequate from table $F_{14,6,0.05} = 4.07$)								

MODULE-V

08Hours

Team Development: Synergy, Team building, types of teams, characteristics of successful teams, team member's roles, effective team meetings, common team problems.

Question paper pattern:

- 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- 2. Five full questions are to be answered choosing at least one from each MODULE.
- 3. Each guestion should not have more than 4 sub divisions.

Textbooks:

- 1. Total quality Management Dale H Berster field (etal) Pears education, Third edition Indian Reprint 2004
- 2. TQM by K. Shridhar Bhat, pearson Education III, EdnI2004, Himalya publishing
- 3. Statistical quality Control by Grant Levenworth (2000).
- 4. Statistical quality Control by M. Mahajan (2015)

Reference Books:

- 1. Statical quality control by Douglos C Mantego third editon Pearson Education 2006
- 2. A new American TQM for revolution in management: Sho-shiba, Alan Graham and, David walder Productivity press Oregon-1990
- 3. Organizational excellence through TQMH Lal, New Age Publishers
- 4. Quality control and Total quality management- P L Jain TMH Publications company Ltd 2001 New Delhi
- 5. Cocran WG, Cox GM, 'Experiment Design' 2nd edition, John Wiley & Sons, Inc.India2000

Course outcomes:

on completion of the course, the student will have the ability to.						
Course	CO	Course Outcome(CO)				
Code	#					
	CO1	Able to apply the knowledge of TQM and contribution of TQM gurus and strong				
	CO2	Identify and implement the tools and techniques like QFD, QFD process.				
CO3 Design solutions of acceptance sampling plan solving percent defective.		Design solutions of acceptance sampling plan solving problems of AOQL and percent defective.				
	CO4	Function effectively individual and team work to supply chain management Activities co ordination and communication is very important.				
	CO5	Demonstrate the knowledge of design of experiments, consistent development and improvement.				

	VEHICLE DY	/NAMICS					
Subject Code	22MEOE754	Credits	03	CIE:50			
Number of Lecture Hours/Week	L 3/Theory)						
Total Number of Lecture Hours	Total Number of						
Prerequisite:							
Course Objectives: 1. To develop the basic knowledge of the students in automotive field in the areas of vehicle vibrations. 2. To develop the skills of the students in stability of vehicles and their effects, related With longitudinal, vertical & lateral dynamics.							
	Modules			Teaching Hours			
MODULE-I CONCEPTOFVIBRATION: Definitions, Modeling and Simulation, Global and Vehicle Coordinate System, Free, Forced, Undamped and Damped Vibration, Response Analysis of Single DOF, Two DOF, Multi DOF, Magnification Factor, Transmissibility, Vibration Absorber, Vibration Measuring Instruments, Torsional Vibration, Critical Speed.							
TIREDYNAMICS: Tire Forces and Moments, Tire Structure, Longitudinal and Lateral Force at Various Slip Angles, Rolling Resistance, Tractive and Cornering Property of Tire. Performance of Tire on Wet Surface. Ride Property of Tires. Magic Formulae Tire Model, Estimation Of Tire Road Friction. Teston Various Road Surfaces. Tire Vibration.							
	MODULE-III						
VERTICALDYNAMICS: Human Response to Vibration, Sources of Vibration. Design and Analysis of Passive, Semi-Active and Active Suspension Using Quarter Car, Half Car and Full Car Model. Influence of Suspension Stiffness, Suspension Damping, and Tire Stiffness. ControlLawforLQR,H-Infinite,SkyhookDamping.AirSuspensionSystemandTheir Properties.							
·	MODULE-IV						
LONGITUDINALDYNAMICS: Aerodynamic Forces and Mom Resistance, Load Distribution for Maximum Acceleration, Reaction F Torque. Prediction of Vehicle Perfo	08Hours						
	MODULE-V						
LATERALDYNAMICS: Steady State Handling Characteristics. Steady State Response to Steering Input. Testing of Handling Characteristics. Transient Response Characteristics, Direction Control Of Vehicles Roll Center, Roll Axis, Vehicle Under Side Forces. Stability of Vehicle Running on Slope, Banked Road and During Turn, Effect of Suspension on Cornering, Latest Trends in Vehicle Dynamic Testing Like Four Poster, Multi Axis Simulator, etc.							

- 1. Total of Ten Questions with two from each MODULE to be set covering the entire syllabus.
- 2. Five full questions are to be answered choosing at least one from each MODULE.
- 3. Each question should not have more than 4 sub divisions.

Textbooks:

- 1. Singiresu S.Rao, "Mechanical Vibrations", 5th Edition, Prentice Hall, 2010
- 2. Wong.J.Y., "Theory of Ground Vehicles", 3rd Edition, Wiley-Inter science, 2001
- 3. Rajesh Rajamani, "Vehicle Dynamics and Control", 1st edition, Springer, 2005
- 4. Thomas D.Gillespie, "Fundamentals of Vehicle Dynamics", Society of Automotive Engineers Inc,1992

Reference Books:

- 1. Dean Karnopp, "Vehicle Stability", 1st edition, Marcel Dekker, 2004
- 2. Nakhaie Jazar.G., "Vehicle Dynamics: Theory and Application", 1st edition, Springer, 2008
- 3. Michael Blundell & Damian Harty, "The Multibody Systems Approach to Vehicle Dynamics", Elsevier Limited 2004 3. Hans B Pacejka, "Tire and Vehicle Dynamics", 2nd edition, SAE International, 2005
- 4. John C. Dixon, "Tires, Suspension, and Handling", 2nd edition, Society of Automotive Engineers Inc, 1996 6. Jan Zuijdijk, 'Vehicle dynamics and damping", Author House, 2009

Ebooks and online course materials:

Course outcomes:

CO	Course Outcome(CO)
СО	1 Understand the basics of vibration, when the vehicle is at dynamic condition
СО	2 Understand the tyre dynamics with respect to force & moments.
СО	Derive the effective cornering stiffness when considering the elastic elements in the wheel suspension and be able to analyze effect on the dynamic characteristics of the vehicle
СО	Understand the aerodynamic forces & moments, load distribution in the various vehicles.
СО	Test the effective steering geometry, vehicle handling & directional control of vehicle